File size: 5,189 Bytes
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import torch
import torch.cuda.amp as amp

from ..modules.model import sinusoidal_embedding_1d
from .ulysses import distributed_attention
from .util import gather_forward, get_rank, get_world_size


def pad_freqs(original_tensor, target_len):
    seq_len, s1, s2 = original_tensor.shape
    pad_size = target_len - seq_len
    padding_tensor = torch.ones(
        pad_size,
        s1,
        s2,
        dtype=original_tensor.dtype,
        device=original_tensor.device)
    padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
    return padded_tensor


@torch.amp.autocast('cuda', enabled=False)
def rope_apply(x, grid_sizes, freqs):
    """
    x:          [B, L, N, C].
    grid_sizes: [B, 3].
    freqs:      [M, C // 2].
    """
    s, n, c = x.size(1), x.size(2), x.size(3) // 2
    # split freqs
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)

    # loop over samples
    output = []
    for i, (f, h, w) in enumerate(grid_sizes.tolist()):
        seq_len = f * h * w

        # precompute multipliers
        x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(
            s, n, -1, 2))
        freqs_i = torch.cat([
            freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
        ],
                            dim=-1).reshape(seq_len, 1, -1)

        # apply rotary embedding
        sp_size = get_world_size()
        sp_rank = get_rank()
        freqs_i = pad_freqs(freqs_i, s * sp_size)
        s_per_rank = s
        freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
                                                       s_per_rank), :, :]
        x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2)
        x_i = torch.cat([x_i, x[i, s:]])

        # append to collection
        output.append(x_i)
    return torch.stack(output).float()


def sp_dit_forward(
    self,
    x,
    t,
    context,
    seq_len,
    y=None,
):
    """
    x:              A list of videos each with shape [C, T, H, W].
    t:              [B].
    context:        A list of text embeddings each with shape [L, C].
    """
    if self.model_type == 'i2v':
        assert y is not None
    # params
    device = self.patch_embedding.weight.device
    if self.freqs.device != device:
        self.freqs = self.freqs.to(device)

    if y is not None:
        x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]

    # embeddings
    x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
    grid_sizes = torch.stack(
        [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
    x = [u.flatten(2).transpose(1, 2) for u in x]
    seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
    assert seq_lens.max() <= seq_len
    x = torch.cat([
        torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
        for u in x
    ])

    # time embeddings
    if t.dim() == 1:
        t = t.expand(t.size(0), seq_len)
    with torch.amp.autocast('cuda', dtype=torch.float32):
        bt = t.size(0)
        t = t.flatten()
        e = self.time_embedding(
            sinusoidal_embedding_1d(self.freq_dim,
                                    t).unflatten(0, (bt, seq_len)).float())
        e0 = self.time_projection(e).unflatten(2, (6, self.dim))
        assert e.dtype == torch.float32 and e0.dtype == torch.float32

    # context
    context_lens = None
    context = self.text_embedding(
        torch.stack([
            torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
            for u in context
        ]))

    # Context Parallel
    x = torch.chunk(x, get_world_size(), dim=1)[get_rank()]
    e = torch.chunk(e, get_world_size(), dim=1)[get_rank()]
    e0 = torch.chunk(e0, get_world_size(), dim=1)[get_rank()]

    # arguments
    kwargs = dict(
        e=e0,
        seq_lens=seq_lens,
        grid_sizes=grid_sizes,
        freqs=self.freqs,
        context=context,
        context_lens=context_lens)

    for block in self.blocks:
        x = block(x, **kwargs)

    # head
    x = self.head(x, e)

    # Context Parallel
    x = gather_forward(x, dim=1)

    # unpatchify
    x = self.unpatchify(x, grid_sizes)
    return [u.float() for u in x]


def sp_attn_forward(self, x, seq_lens, grid_sizes, freqs, dtype=torch.bfloat16):
    b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
    half_dtypes = (torch.float16, torch.bfloat16)

    def half(x):
        return x if x.dtype in half_dtypes else x.to(dtype)

    # query, key, value function
    def qkv_fn(x):
        q = self.norm_q(self.q(x)).view(b, s, n, d)
        k = self.norm_k(self.k(x)).view(b, s, n, d)
        v = self.v(x).view(b, s, n, d)
        return q, k, v

    q, k, v = qkv_fn(x)
    q = rope_apply(q, grid_sizes, freqs)
    k = rope_apply(k, grid_sizes, freqs)

    x = distributed_attention(
        half(q),
        half(k),
        half(v),
        seq_lens,
        window_size=self.window_size,
    )

    # output
    x = x.flatten(2)
    x = self.o(x)
    return x