File size: 24,031 Bytes
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import gc
import logging
import math
import os
import random
import sys
import types
from contextlib import contextmanager
from functools import partial

import torch
import torch.cuda.amp as amp
import torch.distributed as dist
import torchvision.transforms.functional as TF
from PIL import Image
from tqdm import tqdm

from .distributed.fsdp import shard_model
from .distributed.sequence_parallel import sp_attn_forward, sp_dit_forward
from .distributed.util import get_world_size
from .modules.model import WanModel
from .modules.t5 import T5EncoderModel
from .modules.vae2_2 import Wan2_2_VAE
from .utils.fm_solvers import (
    FlowDPMSolverMultistepScheduler,
    get_sampling_sigmas,
    retrieve_timesteps,
)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from .utils.utils import best_output_size, masks_like


class WanTI2V:

    def __init__(
        self,
        config,
        checkpoint_dir,
        device_id=0,
        rank=0,
        t5_fsdp=False,
        dit_fsdp=False,
        use_sp=False,
        t5_cpu=False,
        init_on_cpu=True,
        convert_model_dtype=False,
    ):
        r"""
        Initializes the Wan text-to-video generation model components.

        Args:
            config (EasyDict):
                Object containing model parameters initialized from config.py
            checkpoint_dir (`str`):
                Path to directory containing model checkpoints
            device_id (`int`,  *optional*, defaults to 0):
                Id of target GPU device
            rank (`int`,  *optional*, defaults to 0):
                Process rank for distributed training
            t5_fsdp (`bool`, *optional*, defaults to False):
                Enable FSDP sharding for T5 model
            dit_fsdp (`bool`, *optional*, defaults to False):
                Enable FSDP sharding for DiT model
            use_sp (`bool`, *optional*, defaults to False):
                Enable distribution strategy of sequence parallel.
            t5_cpu (`bool`, *optional*, defaults to False):
                Whether to place T5 model on CPU. Only works without t5_fsdp.
            init_on_cpu (`bool`, *optional*, defaults to True):
                Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
            convert_model_dtype (`bool`, *optional*, defaults to False):
                Convert DiT model parameters dtype to 'config.param_dtype'.
                Only works without FSDP.
        """
        self.device = torch.device(f"cuda:{device_id}")
        self.config = config
        self.rank = rank
        self.t5_cpu = t5_cpu
        self.init_on_cpu = init_on_cpu

        self.num_train_timesteps = config.num_train_timesteps
        self.param_dtype = config.param_dtype

        if t5_fsdp or dit_fsdp or use_sp:
            self.init_on_cpu = False

        shard_fn = partial(shard_model, device_id=device_id)
        self.text_encoder = T5EncoderModel(
            text_len=config.text_len,
            dtype=config.t5_dtype,
            device=torch.device('cpu'),
            checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
            shard_fn=shard_fn if t5_fsdp else None)

        self.vae_stride = config.vae_stride
        self.patch_size = config.patch_size
        self.vae = Wan2_2_VAE(
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
            device=self.device)

        logging.info(f"Creating WanModel from {checkpoint_dir}")
        self.model = WanModel.from_pretrained(checkpoint_dir)
        self.model = self._configure_model(
            model=self.model,
            use_sp=use_sp,
            dit_fsdp=dit_fsdp,
            shard_fn=shard_fn,
            convert_model_dtype=convert_model_dtype)

        if use_sp:
            self.sp_size = get_world_size()
        else:
            self.sp_size = 1

        self.sample_neg_prompt = config.sample_neg_prompt

    def _configure_model(self, model, use_sp, dit_fsdp, shard_fn,
                         convert_model_dtype):
        """
        Configures a model object. This includes setting evaluation modes,
        applying distributed parallel strategy, and handling device placement.

        Args:
            model (torch.nn.Module):
                The model instance to configure.
            use_sp (`bool`):
                Enable distribution strategy of sequence parallel.
            dit_fsdp (`bool`):
                Enable FSDP sharding for DiT model.
            shard_fn (callable):
                The function to apply FSDP sharding.
            convert_model_dtype (`bool`):
                Convert DiT model parameters dtype to 'config.param_dtype'.
                Only works without FSDP.

        Returns:
            torch.nn.Module:
                The configured model.
        """
        model.eval().requires_grad_(False)

        if use_sp:
            for block in model.blocks:
                block.self_attn.forward = types.MethodType(
                    sp_attn_forward, block.self_attn)
            model.forward = types.MethodType(sp_dit_forward, model)

        if dist.is_initialized():
            dist.barrier()

        if dit_fsdp:
            model = shard_fn(model)
        else:
            if convert_model_dtype:
                model.to(self.param_dtype)
            if not self.init_on_cpu:
                model.to(self.device)

        return model

    def generate(self,
                 input_prompt,
                 img=None,
                 size=(1280, 704),
                 max_area=704 * 1280,
                 frame_num=81,
                 shift=5.0,
                 sample_solver='unipc',
                 sampling_steps=50,
                 guide_scale=5.0,
                 n_prompt="",
                 seed=-1,
                 offload_model=True):
        r"""
        Generates video frames from text prompt using diffusion process.

        Args:
            input_prompt (`str`):
                Text prompt for content generation
            img (PIL.Image.Image):
                Input image tensor. Shape: [3, H, W]
            size (`tuple[int]`, *optional*, defaults to (1280,704)):
                Controls video resolution, (width,height).
            max_area (`int`, *optional*, defaults to 704*1280):
                Maximum pixel area for latent space calculation. Controls video resolution scaling
            frame_num (`int`, *optional*, defaults to 81):
                How many frames to sample from a video. The number should be 4n+1
            shift (`float`, *optional*, defaults to 5.0):
                Noise schedule shift parameter. Affects temporal dynamics
            sample_solver (`str`, *optional*, defaults to 'unipc'):
                Solver used to sample the video.
            sampling_steps (`int`, *optional*, defaults to 50):
                Number of diffusion sampling steps. Higher values improve quality but slow generation
            guide_scale (`float`, *optional*, defaults 5.0):
                Classifier-free guidance scale. Controls prompt adherence vs. creativity.
            n_prompt (`str`, *optional*, defaults to ""):
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
            seed (`int`, *optional*, defaults to -1):
                Random seed for noise generation. If -1, use random seed.
            offload_model (`bool`, *optional*, defaults to True):
                If True, offloads models to CPU during generation to save VRAM

        Returns:
            torch.Tensor:
                Generated video frames tensor. Dimensions: (C, N H, W) where:
                - C: Color channels (3 for RGB)
                - N: Number of frames (81)
                - H: Frame height (from size)
                - W: Frame width from size)
        """
        # i2v
        if img is not None:
            return self.i2v(
                input_prompt=input_prompt,
                img=img,
                max_area=max_area,
                frame_num=frame_num,
                shift=shift,
                sample_solver=sample_solver,
                sampling_steps=sampling_steps,
                guide_scale=guide_scale,
                n_prompt=n_prompt,
                seed=seed,
                offload_model=offload_model)
        # t2v
        return self.t2v(
            input_prompt=input_prompt,
            size=size,
            frame_num=frame_num,
            shift=shift,
            sample_solver=sample_solver,
            sampling_steps=sampling_steps,
            guide_scale=guide_scale,
            n_prompt=n_prompt,
            seed=seed,
            offload_model=offload_model)

    def t2v(self,
            input_prompt,
            size=(1280, 704),
            frame_num=121,
            shift=5.0,
            sample_solver='unipc',
            sampling_steps=50,
            guide_scale=5.0,
            n_prompt="",
            seed=-1,
            offload_model=True):
        r"""
        Generates video frames from text prompt using diffusion process.

        Args:
            input_prompt (`str`):
                Text prompt for content generation
            size (`tuple[int]`, *optional*, defaults to (1280,704)):
                Controls video resolution, (width,height).
            frame_num (`int`, *optional*, defaults to 121):
                How many frames to sample from a video. The number should be 4n+1
            shift (`float`, *optional*, defaults to 5.0):
                Noise schedule shift parameter. Affects temporal dynamics
            sample_solver (`str`, *optional*, defaults to 'unipc'):
                Solver used to sample the video.
            sampling_steps (`int`, *optional*, defaults to 50):
                Number of diffusion sampling steps. Higher values improve quality but slow generation
            guide_scale (`float`, *optional*, defaults 5.0):
                Classifier-free guidance scale. Controls prompt adherence vs. creativity.
            n_prompt (`str`, *optional*, defaults to ""):
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
            seed (`int`, *optional*, defaults to -1):
                Random seed for noise generation. If -1, use random seed.
            offload_model (`bool`, *optional*, defaults to True):
                If True, offloads models to CPU during generation to save VRAM

        Returns:
            torch.Tensor:
                Generated video frames tensor. Dimensions: (C, N H, W) where:
                - C: Color channels (3 for RGB)
                - N: Number of frames (81)
                - H: Frame height (from size)
                - W: Frame width from size)
        """
        # preprocess
        F = frame_num
        target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
                        size[1] // self.vae_stride[1],
                        size[0] // self.vae_stride[2])

        seq_len = math.ceil((target_shape[2] * target_shape[3]) /
                            (self.patch_size[1] * self.patch_size[2]) *
                            target_shape[1] / self.sp_size) * self.sp_size

        if n_prompt == "":
            n_prompt = self.sample_neg_prompt
        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
        seed_g = torch.Generator(device=self.device)
        seed_g.manual_seed(seed)

        if not self.t5_cpu:
            self.text_encoder.model.to(self.device)
            context = self.text_encoder([input_prompt], self.device)
            context_null = self.text_encoder([n_prompt], self.device)
            if offload_model:
                self.text_encoder.model.cpu()
        else:
            context = self.text_encoder([input_prompt], torch.device('cpu'))
            context_null = self.text_encoder([n_prompt], torch.device('cpu'))
            context = [t.to(self.device) for t in context]
            context_null = [t.to(self.device) for t in context_null]

        noise = [
            torch.randn(
                target_shape[0],
                target_shape[1],
                target_shape[2],
                target_shape[3],
                dtype=torch.float32,
                device=self.device,
                generator=seed_g)
        ]

        @contextmanager
        def noop_no_sync():
            yield

        no_sync = getattr(self.model, 'no_sync', noop_no_sync)

        # evaluation mode
        with (
                torch.amp.autocast('cuda', dtype=self.param_dtype),
                torch.no_grad(),
                no_sync(),
        ):

            if sample_solver == 'unipc':
                sample_scheduler = FlowUniPCMultistepScheduler(
                    num_train_timesteps=self.num_train_timesteps,
                    shift=1,
                    use_dynamic_shifting=False)
                sample_scheduler.set_timesteps(
                    sampling_steps, device=self.device, shift=shift)
                timesteps = sample_scheduler.timesteps
            elif sample_solver == 'dpm++':
                sample_scheduler = FlowDPMSolverMultistepScheduler(
                    num_train_timesteps=self.num_train_timesteps,
                    shift=1,
                    use_dynamic_shifting=False)
                sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
                timesteps, _ = retrieve_timesteps(
                    sample_scheduler,
                    device=self.device,
                    sigmas=sampling_sigmas)
            else:
                raise NotImplementedError("Unsupported solver.")

            # sample videos
            latents = noise
            mask1, mask2 = masks_like(noise, zero=False)

            arg_c = {'context': context, 'seq_len': seq_len}
            arg_null = {'context': context_null, 'seq_len': seq_len}

            if offload_model or self.init_on_cpu:
                self.model.to(self.device)
                torch.cuda.empty_cache()

            for _, t in enumerate(tqdm(timesteps)):
                latent_model_input = latents
                timestep = [t]

                timestep = torch.stack(timestep)

                temp_ts = (mask2[0][0][:, ::2, ::2] * timestep).flatten()
                temp_ts = torch.cat([
                    temp_ts,
                    temp_ts.new_ones(seq_len - temp_ts.size(0)) * timestep
                ])
                timestep = temp_ts.unsqueeze(0)

                noise_pred_cond = self.model(
                    latent_model_input, t=timestep, **arg_c)[0]
                noise_pred_uncond = self.model(
                    latent_model_input, t=timestep, **arg_null)[0]

                noise_pred = noise_pred_uncond + guide_scale * (
                    noise_pred_cond - noise_pred_uncond)

                temp_x0 = sample_scheduler.step(
                    noise_pred.unsqueeze(0),
                    t,
                    latents[0].unsqueeze(0),
                    return_dict=False,
                    generator=seed_g)[0]
                latents = [temp_x0.squeeze(0)]
            x0 = latents
            if offload_model:
                self.model.cpu()
                torch.cuda.synchronize()
                torch.cuda.empty_cache()
            if self.rank == 0:
                videos = self.vae.decode(x0)

        del noise, latents
        del sample_scheduler
        if offload_model:
            gc.collect()
            torch.cuda.synchronize()
        if dist.is_initialized():
            dist.barrier()

        return videos[0] if self.rank == 0 else None

    def i2v(self,
            input_prompt,
            img,
            max_area=704 * 1280,
            frame_num=121,
            shift=5.0,
            sample_solver='unipc',
            sampling_steps=40,
            guide_scale=5.0,
            n_prompt="",
            seed=-1,
            offload_model=True):
        r"""
        Generates video frames from input image and text prompt using diffusion process.

        Args:
            input_prompt (`str`):
                Text prompt for content generation.
            img (PIL.Image.Image):
                Input image tensor. Shape: [3, H, W]
            max_area (`int`, *optional*, defaults to 704*1280):
                Maximum pixel area for latent space calculation. Controls video resolution scaling
            frame_num (`int`, *optional*, defaults to 121):
                How many frames to sample from a video. The number should be 4n+1
            shift (`float`, *optional*, defaults to 5.0):
                Noise schedule shift parameter. Affects temporal dynamics
                [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
            sample_solver (`str`, *optional*, defaults to 'unipc'):
                Solver used to sample the video.
            sampling_steps (`int`, *optional*, defaults to 40):
                Number of diffusion sampling steps. Higher values improve quality but slow generation
            guide_scale (`float`, *optional*, defaults 5.0):
                Classifier-free guidance scale. Controls prompt adherence vs. creativity.
            n_prompt (`str`, *optional*, defaults to ""):
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
            seed (`int`, *optional*, defaults to -1):
                Random seed for noise generation. If -1, use random seed
            offload_model (`bool`, *optional*, defaults to True):
                If True, offloads models to CPU during generation to save VRAM

        Returns:
            torch.Tensor:
                Generated video frames tensor. Dimensions: (C, N H, W) where:
                - C: Color channels (3 for RGB)
                - N: Number of frames (121)
                - H: Frame height (from max_area)
                - W: Frame width (from max_area)
        """
        # preprocess
        ih, iw = img.height, img.width
        dh, dw = self.patch_size[1] * self.vae_stride[1], self.patch_size[
            2] * self.vae_stride[2]
        ow, oh = best_output_size(iw, ih, dw, dh, max_area)

        scale = max(ow / iw, oh / ih)
        img = img.resize((round(iw * scale), round(ih * scale)), Image.LANCZOS)

        # center-crop
        x1 = (img.width - ow) // 2
        y1 = (img.height - oh) // 2
        img = img.crop((x1, y1, x1 + ow, y1 + oh))
        assert img.width == ow and img.height == oh

        # to tensor
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device).unsqueeze(1)

        F = frame_num
        seq_len = ((F - 1) // self.vae_stride[0] + 1) * (
            oh // self.vae_stride[1]) * (ow // self.vae_stride[2]) // (
                self.patch_size[1] * self.patch_size[2])
        seq_len = int(math.ceil(seq_len / self.sp_size)) * self.sp_size

        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
        seed_g = torch.Generator(device=self.device)
        seed_g.manual_seed(seed)
        noise = torch.randn(
            self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
            oh // self.vae_stride[1],
            ow // self.vae_stride[2],
            dtype=torch.float32,
            generator=seed_g,
            device=self.device)

        if n_prompt == "":
            n_prompt = self.sample_neg_prompt

        # preprocess
        if not self.t5_cpu:
            self.text_encoder.model.to(self.device)
            context = self.text_encoder([input_prompt], self.device)
            context_null = self.text_encoder([n_prompt], self.device)
            if offload_model:
                self.text_encoder.model.cpu()
        else:
            context = self.text_encoder([input_prompt], torch.device('cpu'))
            context_null = self.text_encoder([n_prompt], torch.device('cpu'))
            context = [t.to(self.device) for t in context]
            context_null = [t.to(self.device) for t in context_null]

        z = self.vae.encode([img])

        @contextmanager
        def noop_no_sync():
            yield

        no_sync = getattr(self.model, 'no_sync', noop_no_sync)

        # evaluation mode
        with (
                torch.amp.autocast('cuda', dtype=self.param_dtype),
                torch.no_grad(),
                no_sync(),
        ):

            if sample_solver == 'unipc':
                sample_scheduler = FlowUniPCMultistepScheduler(
                    num_train_timesteps=self.num_train_timesteps,
                    shift=1,
                    use_dynamic_shifting=False)
                sample_scheduler.set_timesteps(
                    sampling_steps, device=self.device, shift=shift)
                timesteps = sample_scheduler.timesteps
            elif sample_solver == 'dpm++':
                sample_scheduler = FlowDPMSolverMultistepScheduler(
                    num_train_timesteps=self.num_train_timesteps,
                    shift=1,
                    use_dynamic_shifting=False)
                sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
                timesteps, _ = retrieve_timesteps(
                    sample_scheduler,
                    device=self.device,
                    sigmas=sampling_sigmas)
            else:
                raise NotImplementedError("Unsupported solver.")

            # sample videos
            latent = noise
            mask1, mask2 = masks_like([noise], zero=True)
            latent = (1. - mask2[0]) * z[0] + mask2[0] * latent

            arg_c = {
                'context': [context[0]],
                'seq_len': seq_len,
            }

            arg_null = {
                'context': context_null,
                'seq_len': seq_len,
            }

            if offload_model or self.init_on_cpu:
                self.model.to(self.device)
                torch.cuda.empty_cache()

            for _, t in enumerate(tqdm(timesteps)):
                latent_model_input = [latent.to(self.device)]
                timestep = [t]

                timestep = torch.stack(timestep).to(self.device)

                temp_ts = (mask2[0][0][:, ::2, ::2] * timestep).flatten()
                temp_ts = torch.cat([
                    temp_ts,
                    temp_ts.new_ones(seq_len - temp_ts.size(0)) * timestep
                ])
                timestep = temp_ts.unsqueeze(0)

                noise_pred_cond = self.model(
                    latent_model_input, t=timestep, **arg_c)[0]
                if offload_model:
                    torch.cuda.empty_cache()
                noise_pred_uncond = self.model(
                    latent_model_input, t=timestep, **arg_null)[0]
                if offload_model:
                    torch.cuda.empty_cache()
                noise_pred = noise_pred_uncond + guide_scale * (
                    noise_pred_cond - noise_pred_uncond)

                temp_x0 = sample_scheduler.step(
                    noise_pred.unsqueeze(0),
                    t,
                    latent.unsqueeze(0),
                    return_dict=False,
                    generator=seed_g)[0]
                latent = temp_x0.squeeze(0)
                latent = (1. - mask2[0]) * z[0] + mask2[0] * latent

                x0 = [latent]
                del latent_model_input, timestep

            if offload_model:
                self.model.cpu()
                torch.cuda.synchronize()
                torch.cuda.empty_cache()

            if self.rank == 0:
                videos = self.vae.decode(x0)

        del noise, latent, x0
        del sample_scheduler
        if offload_model:
            gc.collect()
            torch.cuda.synchronize()
        if dist.is_initialized():
            dist.barrier()

        return videos[0] if self.rank == 0 else None