File size: 5,144 Bytes
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import argparse
import binascii
import logging
import os
import os.path as osp

import imageio
import torch
import torchvision

__all__ = ['cache_video', 'cache_image', 'str2bool']


def rand_name(length=8, suffix=''):
    name = binascii.b2a_hex(os.urandom(length)).decode('utf-8')
    if suffix:
        if not suffix.startswith('.'):
            suffix = '.' + suffix
        name += suffix
    return name


def cache_video(tensor,
                save_file=None,
                fps=30,
                suffix='.mp4',
                nrow=8,
                normalize=True,
                value_range=(-1, 1),
                retry=5):
    # cache file
    cache_file = osp.join('/tmp', rand_name(
        suffix=suffix)) if save_file is None else save_file

    # save to cache
    error = None
    for _ in range(retry):
        try:
            # preprocess
            tensor = tensor.clamp(min(value_range), max(value_range))
            tensor = torch.stack([
                torchvision.utils.make_grid(
                    u, nrow=nrow, normalize=normalize, value_range=value_range)
                for u in tensor.unbind(2)
            ],
                                 dim=1).permute(1, 2, 3, 0)
            tensor = (tensor * 255).type(torch.uint8).cpu()

            # write video
            writer = imageio.get_writer(
                cache_file, fps=fps, codec='libx264', quality=8)
            for frame in tensor.numpy():
                writer.append_data(frame)
            writer.close()
            return cache_file
        except Exception as e:
            error = e
            continue
    else:
        logging.info(f'cache_video failed, error: {error}', flush=True)
        return None


def cache_image(tensor,
                save_file,
                nrow=8,
                normalize=True,
                value_range=(-1, 1),
                retry=5):
    # cache file
    suffix = osp.splitext(save_file)[1]
    if suffix.lower() not in [
            '.jpg', '.jpeg', '.png', '.tiff', '.gif', '.webp'
    ]:
        suffix = '.png'

    # save to cache
    error = None
    for _ in range(retry):
        try:
            tensor = tensor.clamp(min(value_range), max(value_range))
            torchvision.utils.save_image(
                tensor,
                save_file,
                nrow=nrow,
                normalize=normalize,
                value_range=value_range)
            return save_file
        except Exception as e:
            error = e
            continue


def str2bool(v):
    """
    Convert a string to a boolean.

    Supported true values: 'yes', 'true', 't', 'y', '1'
    Supported false values: 'no', 'false', 'f', 'n', '0'

    Args:
        v (str): String to convert.

    Returns:
        bool: Converted boolean value.

    Raises:
        argparse.ArgumentTypeError: If the value cannot be converted to boolean.
    """
    if isinstance(v, bool):
        return v
    v_lower = v.lower()
    if v_lower in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v_lower in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected (True/False)')


def masks_like(tensor, zero=False, generator=None, p=0.2):
    assert isinstance(tensor, list)
    out1 = [torch.ones(u.shape, dtype=u.dtype, device=u.device) for u in tensor]

    out2 = [torch.ones(u.shape, dtype=u.dtype, device=u.device) for u in tensor]

    if zero:
        if generator is not None:
            for u, v in zip(out1, out2):
                random_num = torch.rand(
                    1, generator=generator, device=generator.device).item()
                if random_num < p:
                    u[:, 0] = torch.normal(
                        mean=-3.5,
                        std=0.5,
                        size=(1,),
                        device=u.device,
                        generator=generator).expand_as(u[:, 0]).exp()
                    v[:, 0] = torch.zeros_like(v[:, 0])
                else:
                    u[:, 0] = u[:, 0]
                    v[:, 0] = v[:, 0]
        else:
            for u, v in zip(out1, out2):
                u[:, 0] = torch.zeros_like(u[:, 0])
                v[:, 0] = torch.zeros_like(v[:, 0])

    return out1, out2


def best_output_size(w, h, dw, dh, expected_area):
    # float output size
    ratio = w / h
    ow = (expected_area * ratio)**0.5
    oh = expected_area / ow

    # process width first
    ow1 = int(ow // dw * dw)
    oh1 = int(expected_area / ow1 // dh * dh)
    assert ow1 % dw == 0 and oh1 % dh == 0 and ow1 * oh1 <= expected_area
    ratio1 = ow1 / oh1

    # process height first
    oh2 = int(oh // dh * dh)
    ow2 = int(expected_area / oh2 // dw * dw)
    assert oh2 % dh == 0 and ow2 % dw == 0 and ow2 * oh2 <= expected_area
    ratio2 = ow2 / oh2

    # compare ratios
    if max(ratio / ratio1, ratio1 / ratio) < max(ratio / ratio2,
                                                 ratio2 / ratio):
        return ow1, oh1
    else:
        return ow2, oh2