ginipick's picture
Update app.py
30b4e47 verified
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
#import subprocess
#subprocess.run('pip install flash-attn==2.7.4.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# wan2.2-main/gradio_ti2v.py
import gradio as gr
import torch
from huggingface_hub import snapshot_download
from PIL import Image
import random
import numpy as np
import spaces
import wan
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from wan.utils.utils import cache_video
import gc
# --- 1. Global Setup and Model Loading ---
print("Starting Gradio App for Wan 2.2 TI2V-5B...")
# Download model snapshots from Hugging Face Hub
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
print(f"Downloading/loading checkpoints for {repo_id}...")
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
print(f"Using checkpoints from {ckpt_dir}")
# Load the model configuration
TASK_NAME = 'ti2v-5B'
cfg = WAN_CONFIGS[TASK_NAME]
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121
# Instantiate the pipeline in the global scope
print("Initializing WanTI2V pipeline...")
device = "cuda" if torch.cuda.is_available() else "cpu"
device_id = 0 if torch.cuda.is_available() else -1
pipeline = wan.WanTI2V(
config=cfg,
checkpoint_dir=ckpt_dir,
device_id=device_id,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_sp=False,
t5_cpu=False,
init_on_cpu=False,
convert_model_dtype=True,
)
print("Pipeline initialized and ready.")
# --- Helper Functions ---
def clear_gpu_memory():
"""Clear GPU memory more thoroughly"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
def select_best_size_for_image(image, available_sizes):
"""Select the size option with aspect ratio closest to the input image."""
if image is None:
return available_sizes[0] # Return first option if no image
img_width, img_height = image.size
img_aspect_ratio = img_height / img_width
best_size = available_sizes[0]
best_diff = float('inf')
for size_str in available_sizes:
# Parse size string like "704*1280"
height, width = map(int, size_str.split('*'))
size_aspect_ratio = height / width
diff = abs(img_aspect_ratio - size_aspect_ratio)
if diff < best_diff:
best_diff = diff
best_size = size_str
return best_size
def handle_image_upload(image):
"""Handle image upload and return the best matching size."""
if image is None:
return gr.update()
pil_image = Image.fromarray(image).convert("RGB")
available_sizes = list(SUPPORTED_SIZES[TASK_NAME])
best_size = select_best_size_for_image(pil_image, available_sizes)
return gr.update(value=best_size)
def validate_inputs(image, prompt, duration_seconds):
"""Validate user inputs"""
errors = []
if not prompt or len(prompt.strip()) < 5:
errors.append("Prompt must be at least 5 characters long.")
if image is not None:
img = Image.fromarray(image)
if img.size[0] * img.size[1] > 4096 * 4096:
errors.append("Image size is too large (maximum 4096x4096).")
if duration_seconds > 5.0 and image is None:
errors.append("Videos longer than 5 seconds require an input image.")
return errors
def get_duration(image,
prompt,
size,
duration_seconds,
sampling_steps,
guide_scale,
shift,
seed,
progress):
"""Calculate dynamic GPU duration based on parameters."""
if sampling_steps > 35 and duration_seconds >= 2:
return 120
elif sampling_steps < 35 or duration_seconds < 2:
return 105
else:
return 90
def apply_template(template, current_prompt):
"""Apply prompt template"""
if "{subject}" in template:
# Extract the main subject from current prompt (simple heuristic)
subject = current_prompt.split(",")[0] if "," in current_prompt else current_prompt
return template.replace("{subject}", subject)
return template + " " + current_prompt
# --- 2. Gradio Inference Function ---
@spaces.GPU(duration=get_duration)
def generate_video(
image,
prompt,
size,
duration_seconds,
sampling_steps,
guide_scale,
shift,
seed,
progress=gr.Progress(track_tqdm=True)
):
"""The main function to generate video, called by the Gradio interface."""
# Validate inputs
errors = validate_inputs(image, prompt, duration_seconds)
if errors:
raise gr.Error("\n".join(errors))
progress(0, desc="Setting up...")
if seed == -1:
seed = random.randint(0, sys.maxsize)
progress(0.1, desc="Processing image...")
input_image = None
if image is not None:
input_image = Image.fromarray(image).convert("RGB")
# Resize image to match selected size
target_height, target_width = map(int, size.split('*'))
input_image = input_image.resize((target_width, target_height))
# Calculate number of frames based on duration
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
progress(0.2, desc="Generating video...")
try:
video_tensor = pipeline.generate(
input_prompt=prompt,
img=input_image, # Pass None for T2V, Image for I2V
size=SIZE_CONFIGS[size],
max_area=MAX_AREA_CONFIGS[size],
frame_num=num_frames, # Use calculated frames instead of cfg.frame_num
shift=shift,
sample_solver='unipc',
sampling_steps=int(sampling_steps),
guide_scale=guide_scale,
seed=seed,
offload_model=True
)
progress(0.9, desc="Saving video...")
# Save the video to a temporary file
video_path = cache_video(
tensor=video_tensor[None], # Add a batch dimension
save_file=None, # cache_video will create a temp file
fps=cfg.sample_fps,
normalize=True,
value_range=(-1, 1)
)
progress(1.0, desc="Complete!")
except torch.cuda.OutOfMemoryError:
clear_gpu_memory()
raise gr.Error("GPU out of memory. Please try with lower settings.")
except Exception as e:
raise gr.Error(f"Video generation failed: {str(e)}")
finally:
if 'video_tensor' in locals():
del video_tensor
clear_gpu_memory()
return video_path
# --- 3. Gradio Interface ---
css = """
.gradio-container {max-width: 1100px !important; margin: 0 auto}
#output_video {height: 500px;}
#input_image {height: 500px;}
.template-btn {margin: 2px !important;}
"""
# Default prompt with motion emphasis
DEFAULT_PROMPT = "Generate a video with smooth and natural movement. Objects should have visible motion while maintaining fluid transitions."
# Prompt templates
templates = {
"Cinematic": "cinematic shot of {subject}, professional lighting, smooth camera movement, 4k quality",
"Animation": "animated style {subject}, vibrant colors, fluid motion, dynamic movement",
"Nature": "nature documentary footage of {subject}, wildlife photography, natural movement",
"Slow Motion": "slow motion capture of {subject}, high speed camera, detailed motion",
"Action": "dynamic action shot of {subject}, fast paced movement, energetic motion"
}
with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
gr.Markdown("""
# Wan 2.2 TI2V Enhanced
Generate high quality videos using **Wan 2.2 5B Text-Image-to-Video model**
[[model]](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B), [[paper]](https://arxiv.org/abs/2503.20314)
### 💡 Tips for best results:
- 🖼️ Upload an image for better control over the video content
- ⏱️ Longer videos require more processing time
- 🎯 Be specific and descriptive in your prompts
- 🎬 Include motion-related keywords for dynamic videos
""")
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(type="numpy", label="Input Image (Optional)", elem_id="input_image")
prompt_input = gr.Textbox(
label="Prompt",
value=DEFAULT_PROMPT,
lines=3,
placeholder="Describe the video you want to generate..."
)
# Prompt templates section
with gr.Accordion("Prompt Templates", open=False):
gr.Markdown("Click a template to apply it to your prompt:")
with gr.Row():
template_buttons = {}
for name, template in templates.items():
btn = gr.Button(name, size="sm", elem_classes=["template-btn"])
template_buttons[name] = (btn, template)
# Connect template buttons
for name, (btn, template) in template_buttons.items():
btn.click(
fn=lambda t=template, p=prompt_input: apply_template(t, p),
inputs=[prompt_input],
outputs=prompt_input
)
duration_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1),
step=0.1,
value=2.0,
label="Duration (seconds)",
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
size_input = gr.Dropdown(
label="Output Resolution",
choices=list(SUPPORTED_SIZES[TASK_NAME]),
value="704*1280"
)
with gr.Column(scale=2):
video_output = gr.Video(label="Generated Video", elem_id="output_video")
# Status indicators
with gr.Row():
status_text = gr.Textbox(
label="Status",
value="Ready",
interactive=False,
max_lines=1
)
with gr.Accordion("Advanced Settings", open=False):
steps_input = gr.Slider(
label="Sampling Steps",
minimum=10,
maximum=50,
value=38,
step=1,
info="Higher values = better quality but slower"
)
scale_input = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=10.0,
value=cfg.sample_guide_scale,
step=0.1,
info="Higher values = closer to prompt but less creative"
)
shift_input = gr.Slider(
label="Sample Shift",
minimum=1.0,
maximum=20.0,
value=cfg.sample_shift,
step=0.1,
info="Affects the sampling process dynamics"
)
seed_input = gr.Number(
label="Seed (-1 for random)",
value=-1,
precision=0,
info="Use same seed for reproducible results"
)
run_button = gr.Button("Generate Video", variant="primary", size="lg")
# Add image upload handler
image_input.upload(
fn=handle_image_upload,
inputs=[image_input],
outputs=[size_input]
)
image_input.clear(
fn=handle_image_upload,
inputs=[image_input],
outputs=[size_input]
)
# Update status when generating
def update_status_and_generate(*args):
status_text.value = "Generating..."
try:
result = generate_video(*args)
status_text.value = "Complete!"
return result
except Exception as e:
status_text.value = "Error occurred"
raise e
example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
gr.Examples(
examples=[
[example_image_path, "The cat removes the glasses from its eyes with smooth motion.", "1280*704", 1.5],
[None, "A cinematic shot of a boat sailing on calm waves with gentle rocking motion at sunset.", "1280*704", 2.0],
[None, "Drone footage flying smoothly over a futuristic city with flying cars in continuous motion.", "1280*704", 2.0],
[None, DEFAULT_PROMPT + " A waterfall cascading down rocks.", "704*1280", 2.5],
[None, DEFAULT_PROMPT + " Birds flying across a cloudy sky.", "1280*704", 3.0],
],
inputs=[image_input, prompt_input, size_input, duration_input],
outputs=video_output,
fn=generate_video,
cache_examples=False,
)
run_button.click(
fn=generate_video,
inputs=[image_input, prompt_input, size_input, duration_input, steps_input, scale_input, shift_input, seed_input],
outputs=video_output
)
if __name__ == "__main__":
demo.launch()