# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import json import logging import math import os import random import sys import tempfile from dataclasses import dataclass from http import HTTPStatus from typing import Optional, Union import dashscope import torch from PIL import Image try: from flash_attn import flash_attn_varlen_func FLASH_VER = 2 except ModuleNotFoundError: flash_attn_varlen_func = None # in compatible with CPU machines FLASH_VER = None from .system_prompt import * DEFAULT_SYS_PROMPTS = { "t2v-A14B": { "zh": T2V_A14B_ZH_SYS_PROMPT, "en": T2V_A14B_EN_SYS_PROMPT, }, "i2v-A14B": { "zh": I2V_A14B_ZH_SYS_PROMPT, "en": I2V_A14B_EN_SYS_PROMPT, "empty": { "zh": I2V_A14B_EMPTY_ZH_SYS_PROMPT, "en": I2V_A14B_EMPTY_EN_SYS_PROMPT, } }, "ti2v-5B": { "t2v": { "zh": T2V_A14B_ZH_SYS_PROMPT, "en": T2V_A14B_EN_SYS_PROMPT, }, "i2v": { "zh": I2V_A14B_ZH_SYS_PROMPT, "en": I2V_A14B_EN_SYS_PROMPT, } }, } @dataclass class PromptOutput(object): status: bool prompt: str seed: int system_prompt: str message: str def add_custom_field(self, key: str, value) -> None: self.__setattr__(key, value) class PromptExpander: def __init__(self, model_name, task, is_vl=False, device=0, **kwargs): self.model_name = model_name self.task = task self.is_vl = is_vl self.device = device def extend_with_img(self, prompt, system_prompt, image=None, seed=-1, *args, **kwargs): pass def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs): pass def decide_system_prompt(self, tar_lang="zh", prompt=None): assert self.task is not None if "ti2v" in self.task: if self.is_vl: return DEFAULT_SYS_PROMPTS[self.task]["i2v"][tar_lang] else: return DEFAULT_SYS_PROMPTS[self.task]["t2v"][tar_lang] if "i2v" in self.task and len(prompt) == 0: return DEFAULT_SYS_PROMPTS[self.task]["empty"][tar_lang] return DEFAULT_SYS_PROMPTS[self.task][tar_lang] def __call__(self, prompt, system_prompt=None, tar_lang="zh", image=None, seed=-1, *args, **kwargs): if system_prompt is None: system_prompt = self.decide_system_prompt( tar_lang=tar_lang, prompt=prompt) if seed < 0: seed = random.randint(0, sys.maxsize) if image is not None and self.is_vl: return self.extend_with_img( prompt, system_prompt, image=image, seed=seed, *args, **kwargs) elif not self.is_vl: return self.extend(prompt, system_prompt, seed, *args, **kwargs) else: raise NotImplementedError class DashScopePromptExpander(PromptExpander): def __init__(self, api_key=None, model_name=None, task=None, max_image_size=512 * 512, retry_times=4, is_vl=False, **kwargs): ''' Args: api_key: The API key for Dash Scope authentication and access to related services. model_name: Model name, 'qwen-plus' for extending prompts, 'qwen-vl-max' for extending prompt-images. task: Task name. This is required to determine the default system prompt. max_image_size: The maximum size of the image; unit unspecified (e.g., pixels, KB). Please specify the unit based on actual usage. retry_times: Number of retry attempts in case of request failure. is_vl: A flag indicating whether the task involves visual-language processing. **kwargs: Additional keyword arguments that can be passed to the function or method. ''' if model_name is None: model_name = 'qwen-plus' if not is_vl else 'qwen-vl-max' super().__init__(model_name, task, is_vl, **kwargs) if api_key is not None: dashscope.api_key = api_key elif 'DASH_API_KEY' in os.environ and os.environ[ 'DASH_API_KEY'] is not None: dashscope.api_key = os.environ['DASH_API_KEY'] else: raise ValueError("DASH_API_KEY is not set") if 'DASH_API_URL' in os.environ and os.environ[ 'DASH_API_URL'] is not None: dashscope.base_http_api_url = os.environ['DASH_API_URL'] else: dashscope.base_http_api_url = 'https://dashscope.aliyuncs.com/api/v1' self.api_key = api_key self.max_image_size = max_image_size self.model = model_name self.retry_times = retry_times def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs): messages = [{ 'role': 'system', 'content': system_prompt }, { 'role': 'user', 'content': prompt }] exception = None for _ in range(self.retry_times): try: response = dashscope.Generation.call( self.model, messages=messages, seed=seed, result_format='message', # set the result to be "message" format. ) assert response.status_code == HTTPStatus.OK, response expanded_prompt = response['output']['choices'][0]['message'][ 'content'] return PromptOutput( status=True, prompt=expanded_prompt, seed=seed, system_prompt=system_prompt, message=json.dumps(response, ensure_ascii=False)) except Exception as e: exception = e return PromptOutput( status=False, prompt=prompt, seed=seed, system_prompt=system_prompt, message=str(exception)) def extend_with_img(self, prompt, system_prompt, image: Union[Image.Image, str] = None, seed=-1, *args, **kwargs): if isinstance(image, str): image = Image.open(image).convert('RGB') w = image.width h = image.height area = min(w * h, self.max_image_size) aspect_ratio = h / w resized_h = round(math.sqrt(area * aspect_ratio)) resized_w = round(math.sqrt(area / aspect_ratio)) image = image.resize((resized_w, resized_h)) with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as f: image.save(f.name) fname = f.name image_path = f"file://{f.name}" prompt = f"{prompt}" messages = [ { 'role': 'system', 'content': [{ "text": system_prompt }] }, { 'role': 'user', 'content': [{ "text": prompt }, { "image": image_path }] }, ] response = None result_prompt = prompt exception = None status = False for _ in range(self.retry_times): try: response = dashscope.MultiModalConversation.call( self.model, messages=messages, seed=seed, result_format='message', # set the result to be "message" format. ) assert response.status_code == HTTPStatus.OK, response result_prompt = response['output']['choices'][0]['message'][ 'content'][0]['text'].replace('\n', '\\n') status = True break except Exception as e: exception = e result_prompt = result_prompt.replace('\n', '\\n') os.remove(fname) return PromptOutput( status=status, prompt=result_prompt, seed=seed, system_prompt=system_prompt, message=str(exception) if not status else json.dumps( response, ensure_ascii=False)) class QwenPromptExpander(PromptExpander): model_dict = { "QwenVL2.5_3B": "Qwen/Qwen2.5-VL-3B-Instruct", "QwenVL2.5_7B": "Qwen/Qwen2.5-VL-7B-Instruct", "Qwen2.5_3B": "Qwen/Qwen2.5-3B-Instruct", "Qwen2.5_7B": "Qwen/Qwen2.5-7B-Instruct", "Qwen2.5_14B": "Qwen/Qwen2.5-14B-Instruct", } def __init__(self, model_name=None, task=None, device=0, is_vl=False, **kwargs): ''' Args: model_name: Use predefined model names such as 'QwenVL2.5_7B' and 'Qwen2.5_14B', which are specific versions of the Qwen model. Alternatively, you can use the local path to a downloaded model or the model name from Hugging Face." Detailed Breakdown: Predefined Model Names: * 'QwenVL2.5_7B' and 'Qwen2.5_14B' are specific versions of the Qwen model. Local Path: * You can provide the path to a model that you have downloaded locally. Hugging Face Model Name: * You can also specify the model name from Hugging Face's model hub. task: Task name. This is required to determine the default system prompt. is_vl: A flag indicating whether the task involves visual-language processing. **kwargs: Additional keyword arguments that can be passed to the function or method. ''' if model_name is None: model_name = 'Qwen2.5_14B' if not is_vl else 'QwenVL2.5_7B' super().__init__(model_name, task, is_vl, device, **kwargs) if (not os.path.exists(self.model_name)) and (self.model_name in self.model_dict): self.model_name = self.model_dict[self.model_name] if self.is_vl: # default: Load the model on the available device(s) from transformers import ( AutoProcessor, AutoTokenizer, Qwen2_5_VLForConditionalGeneration, ) try: from .qwen_vl_utils import process_vision_info except: from qwen_vl_utils import process_vision_info self.process_vision_info = process_vision_info min_pixels = 256 * 28 * 28 max_pixels = 1280 * 28 * 28 self.processor = AutoProcessor.from_pretrained( self.model_name, min_pixels=min_pixels, max_pixels=max_pixels, use_fast=True) self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained( self.model_name, torch_dtype=torch.bfloat16 if FLASH_VER == 2 else torch.float16 if "AWQ" in self.model_name else "auto", attn_implementation="flash_attention_2" if FLASH_VER == 2 else None, device_map="cpu") else: from transformers import AutoModelForCausalLM, AutoTokenizer self.model = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.float16 if "AWQ" in self.model_name else "auto", attn_implementation="flash_attention_2" if FLASH_VER == 2 else None, device_map="cpu") self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs): self.model = self.model.to(self.device) messages = [{ "role": "system", "content": system_prompt }, { "role": "user", "content": prompt }] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True) model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device) generated_ids = self.model.generate(**model_inputs, max_new_tokens=512) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip( model_inputs.input_ids, generated_ids) ] expanded_prompt = self.tokenizer.batch_decode( generated_ids, skip_special_tokens=True)[0] self.model = self.model.to("cpu") return PromptOutput( status=True, prompt=expanded_prompt, seed=seed, system_prompt=system_prompt, message=json.dumps({"content": expanded_prompt}, ensure_ascii=False)) def extend_with_img(self, prompt, system_prompt, image: Union[Image.Image, str] = None, seed=-1, *args, **kwargs): self.model = self.model.to(self.device) messages = [{ 'role': 'system', 'content': [{ "type": "text", "text": system_prompt }] }, { "role": "user", "content": [ { "type": "image", "image": image, }, { "type": "text", "text": prompt }, ], }] # Preparation for inference text = self.processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = self.process_vision_info(messages) inputs = self.processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(self.device) # Inference: Generation of the output generated_ids = self.model.generate(**inputs, max_new_tokens=512) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] expanded_prompt = self.processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] self.model = self.model.to("cpu") return PromptOutput( status=True, prompt=expanded_prompt, seed=seed, system_prompt=system_prompt, message=json.dumps({"content": expanded_prompt}, ensure_ascii=False)) if __name__ == "__main__": logging.basicConfig( level=logging.INFO, format="[%(asctime)s] %(levelname)s: %(message)s", handlers=[logging.StreamHandler(stream=sys.stdout)]) seed = 100 prompt = "夏日海滩度假风格,一只戴着墨镜的白色猫咪坐在冲浪板上。猫咪毛发蓬松,表情悠闲,直视镜头。背景是模糊的海滩景色,海水清澈,远处有绿色的山丘和蓝天白云。猫咪的姿态自然放松,仿佛在享受海风和阳光。近景特写,强调猫咪的细节和海滩的清新氛围。" en_prompt = "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." image = "./examples/i2v_input.JPG" def test(method, prompt, model_name, task, image=None, en_prompt=None, seed=None): prompt_expander = method( model_name=model_name, task=task, is_vl=image is not None) result = prompt_expander(prompt, image=image, tar_lang="zh") logging.info(f"zh prompt -> zh: {result.prompt}") result = prompt_expander(prompt, image=image, tar_lang="en") logging.info(f"zh prompt -> en: {result.prompt}") if en_prompt is not None: result = prompt_expander(en_prompt, image=image, tar_lang="zh") logging.info(f"en prompt -> zh: {result.prompt}") result = prompt_expander(en_prompt, image=image, tar_lang="en") logging.info(f"en prompt -> en: {result.prompt}") ds_model_name = None ds_vl_model_name = None qwen_model_name = None qwen_vl_model_name = None for task in ["t2v-A14B", "i2v-A14B", "ti2v-5B"]: # test prompt extend if "t2v" in task or "ti2v" in task: # test dashscope api logging.info(f"-" * 40) logging.info(f"Testing {task} dashscope prompt extend") test( DashScopePromptExpander, prompt, ds_model_name, task, image=None, en_prompt=en_prompt, seed=seed) # test qwen api logging.info(f"-" * 40) logging.info(f"Testing {task} qwen prompt extend") test( QwenPromptExpander, prompt, qwen_model_name, task, image=None, en_prompt=en_prompt, seed=seed) # test prompt-image extend if "i2v" in task: # test dashscope api logging.info(f"-" * 40) logging.info(f"Testing {task} dashscope vl prompt extend") test( DashScopePromptExpander, prompt, ds_vl_model_name, task, image=image, en_prompt=en_prompt, seed=seed) # test qwen api logging.info(f"-" * 40) logging.info(f"Testing {task} qwen vl prompt extend") test( QwenPromptExpander, prompt, qwen_vl_model_name, task, image=image, en_prompt=en_prompt, seed=seed) # test empty prompt extend if "i2v-A14B" in task: # test dashscope api logging.info(f"-" * 40) logging.info(f"Testing {task} dashscope vl empty prompt extend") test( DashScopePromptExpander, "", ds_vl_model_name, task, image=image, en_prompt=None, seed=seed) # test qwen api logging.info(f"-" * 40) logging.info(f"Testing {task} qwen vl empty prompt extend") test( QwenPromptExpander, "", qwen_vl_model_name, task, image=image, en_prompt=None, seed=seed)