Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import random | |
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| from PIL import Image | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| repo_id = "black-forest-labs/FLUX.1-dev" | |
| adapter_id = "alvarobartt/ghibli-characters-flux-lora" | |
| pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16) | |
| pipeline.load_lora_weights(adapter_id) | |
| pipeline = pipeline.to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def inference( | |
| prompt: str, | |
| seed: int, | |
| randomize_seed: bool, | |
| width: int, | |
| height: int, | |
| guidance_scale: float, | |
| num_inference_steps: int, | |
| lora_scale: float, | |
| progress: gr.Progress = gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| image = pipeline( | |
| prompt=prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| joint_attention_kwargs={"scale": lora_scale}, | |
| ).images[0] | |
| return image, seed | |
| examples = [ | |
| ( | |
| "Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet," | |
| " standing heroically on a lush alien planet, vibrant flowers blooming around, soft" | |
| " sunlight illuminating the scene, a gentle breeze rustling the leaves" | |
| ), | |
| ] | |
| css = """ | |
| footer { | |
| visibility: hidden; | |
| } | |
| """ | |
| with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css | |
| ) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=768, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=3.5, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=30, | |
| ) | |
| lora_scale = gr.Slider( | |
| label="LoRA scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=1.0, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| fn=lambda x: (Image.open("./example.jpg"), 42), | |
| inputs=[prompt], | |
| outputs=[result, seed], | |
| run_on_click=True, | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=inference, | |
| inputs=[ | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| lora_scale, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| demo.queue() | |
| demo.launch() |