Spaces:
Running
on
Zero
Running
on
Zero
File size: 66,250 Bytes
50f328c 2a8ac85 50f328c 17a13c7 2a8ac85 8336ddb 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 50f328c 17a13c7 0f1d758 17a13c7 d4dcfc5 17a13c7 0f1d758 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 0f1d758 17a13c7 d4dcfc5 0f1d758 50f328c cdbfba8 50f328c cdbfba8 17a13c7 cdbfba8 17a13c7 cdbfba8 17a13c7 cdbfba8 17a13c7 cdbfba8 17a13c7 cdbfba8 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 50f328c 17a13c7 cdbfba8 17a13c7 50f328c 0f1d758 d4dcfc5 cdbfba8 d4dcfc5 17a13c7 d4dcfc5 0f1d758 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 cdbfba8 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 cdbfba8 17a13c7 d4dcfc5 0f1d758 6dcbefe cdbfba8 6dcbefe 17a13c7 6dcbefe d4dcfc5 6dcbefe d4dcfc5 17a13c7 d4dcfc5 6dcbefe d4dcfc5 17a13c7 d4dcfc5 17a13c7 6dcbefe 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 6dcbefe cdbfba8 50f328c cdbfba8 50f328c d4dcfc5 8336ddb d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 d4dcfc5 17a13c7 cdbfba8 50f328c 6dcbefe 50f328c d4dcfc5 17a13c7 d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 17a13c7 d4dcfc5 50f328c 17a13c7 d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 17a13c7 d4dcfc5 50f328c 17a13c7 d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 17a13c7 d4dcfc5 50f328c 17a13c7 d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 17a13c7 d4dcfc5 50f328c 17a13c7 d4dcfc5 17a13c7 d4dcfc5 50f328c 17a13c7 d4dcfc5 50f328c d4dcfc5 17a13c7 d4dcfc5 50f328c 17a13c7 50f328c d4dcfc5 50f328c 17a13c7 6dcbefe 17a13c7 6dcbefe 50f328c d4dcfc5 50f328c d4dcfc5 17a13c7 d4dcfc5 50f328c d4dcfc5 17a13c7 50f328c d4dcfc5 17a13c7 d4dcfc5 50f328c d4dcfc5 17a13c7 d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 17a13c7 d4dcfc5 17a13c7 da097bc d4dcfc5 17a13c7 50f328c 6dcbefe d4dcfc5 17a13c7 d4dcfc5 da097bc 17a13c7 1082c60 17a13c7 da097bc 17a13c7 da097bc 17a13c7 da097bc 6dcbefe 17a13c7 6dcbefe 17a13c7 d4dcfc5 17a13c7 d4dcfc5 6dcbefe 50f328c d4dcfc5 50f328c d4dcfc5 17a13c7 d4dcfc5 50f328c d4dcfc5 17a13c7 50f328c d4dcfc5 17a13c7 d4dcfc5 50f328c 6dcbefe d4dcfc5 17a13c7 6dcbefe 50f328c 6dcbefe 50f328c 17a13c7 d4dcfc5 17a13c7 50f328c 6dcbefe 50f328c d4dcfc5 6dcbefe 17a13c7 50f328c 17a13c7 50f328c 6dcbefe 17a13c7 6dcbefe 17a13c7 d4dcfc5 6dcbefe 50f328c 6dcbefe 17a13c7 50f328c 1082c60 17a13c7 50f328c d4dcfc5 6dcbefe 1082c60 17a13c7 6dcbefe d4dcfc5 17a13c7 d4dcfc5 50f328c 17a13c7 50f328c 217c6bd 0f1d758 217c6bd 0f1d758 6dcbefe 217c6bd 6dcbefe 217c6bd 0236769 217c6bd d4dcfc5 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 0236769 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 0f1d758 217c6bd 17a13c7 da097bc 1082c60 17a13c7 1082c60 17a13c7 1082c60 17a13c7 1082c60 17a13c7 1082c60 17a13c7 1082c60 17a13c7 da097bc 17a13c7 da097bc 6dcbefe 50f328c ffb7037 17a13c7 ffb7037 17a13c7 ffb7037 217c6bd ffb7037 217c6bd 183a1ff 217c6bd 183a1ff 17a13c7 217c6bd 183a1ff 217c6bd 183a1ff 217c6bd 183a1ff 217c6bd 183a1ff ffb7037 17a13c7 ffb7037 2a8ac85 50f328c 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 8336ddb 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 50f328c 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 50f328c 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 50f328c 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 8336ddb 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 17a13c7 2a8ac85 183a1ff 217c6bd 1064203 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 217c6bd 17a13c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 |
from diffusers_helper.hf_login import login
import os
import threading
import time
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import json
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
# 영어/한국어 번역 딕셔너리
translations = {
"en": {
"title": "FramePack - Image to Video Generation",
"upload_image": "Upload Image",
"prompt": "Prompt",
"quick_prompts": "Quick Prompts",
"start_generation": "Generate",
"stop_generation": "Stop",
"use_teacache": "Use TeaCache",
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
"negative_prompt": "Negative Prompt",
"seed": "Seed",
"video_length": "Video Length (max 5 seconds)",
"latent_window": "Latent Window Size",
"steps": "Inference Steps",
"steps_info": "Changing this value is not recommended.",
"cfg_scale": "CFG Scale",
"distilled_cfg": "Distilled CFG Scale",
"distilled_cfg_info": "Changing this value is not recommended.",
"cfg_rescale": "CFG Rescale",
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
"next_latents": "Next Latents",
"generated_video": "Generated Video",
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
"error_message": "Error",
"processing_error": "Processing error",
"network_error": "Network connection is unstable, model download timed out. Please try again later.",
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
"partial_video": "Processing error, but partial video has been generated",
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
},
"ko": {
"title": "FramePack - 이미지에서 동영상 생성",
"upload_image": "이미지 업로드",
"prompt": "프롬프트",
"quick_prompts": "빠른 프롬프트 목록",
"start_generation": "생성 시작",
"stop_generation": "생성 중지",
"use_teacache": "TeaCache 사용",
"teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.",
"negative_prompt": "부정 프롬프트",
"seed": "랜덤 시드",
"video_length": "동영상 길이 (최대 5초)",
"latent_window": "잠재 윈도우 크기",
"steps": "추론 스텝 수",
"steps_info": "이 값을 변경하는 것은 권장되지 않습니다.",
"cfg_scale": "CFG 스케일",
"distilled_cfg": "증류된 CFG 스케일",
"distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.",
"cfg_rescale": "CFG 재스케일",
"gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)",
"gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.",
"next_latents": "다음 잠재 변수",
"generated_video": "생성된 동영상",
"sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 동영상에 나타나지 않으면 기다려 주십시오. 나중에 생성됩니다.",
"error_message": "오류 메시지",
"processing_error": "처리 중 오류 발생",
"network_error": "네트워크 연결이 불안정하여 모델 다운로드가 시간 초과되었습니다. 나중에 다시 시도해 주십시오.",
"memory_error": "GPU 메모리가 부족합니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요.",
"model_error": "모델 로드에 실패했습니다. 네트워크 문제 또는 서버 부하가 높을 수 있습니다. 나중에 다시 시도해 주십시오.",
"partial_video": "처리 중 오류가 발생했지만 일부 동영상이 생성되었습니다.",
"processing_interrupt": "처리 중 중단되었지만 일부 동영상이 생성되었습니다."
}
}
# 다국어 텍스트를 반환하는 함수
def get_translation(key, lang="en"):
if lang in translations and key in translations[lang]:
return translations[lang][key]
# 기본값(영어) 반환
return translations["en"].get(key, key)
# 디폴트 언어를 영어로 설정
current_language = "en"
# 언어 전환 함수
def switch_language():
global current_language
current_language = "ko" if current_language == "en" else "en"
return current_language
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math
# Spaces 환경 체크
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
# GPU 사용 여부 기록
GPU_AVAILABLE = False
GPU_INITIALIZED = False
last_update_time = time.time()
# Spaces 환경이라면, spaces 모듈 불러오기 시도
if IN_HF_SPACE:
try:
import spaces
print("Hugging Face Space 환경에서 실행 중, spaces 모듈을 불러왔습니다.")
# GPU 사용 가능 여부 확인
try:
GPU_AVAILABLE = torch.cuda.is_available()
print(f"GPU available: {GPU_AVAILABLE}")
if GPU_AVAILABLE:
print(f"GPU device name: {torch.cuda.get_device_name(0)}")
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
# 작은 테스트 연산으로 실제 GPU 동작 확인
test_tensor = torch.zeros(1, device='cuda')
test_tensor = test_tensor + 1
del test_tensor
print("GPU 테스트 연산 성공")
else:
print("경고: CUDA는 가능하다고 하나 실제 GPU 디바이스를 찾을 수 없습니다.")
except Exception as e:
GPU_AVAILABLE = False
print(f"GPU 확인 중 오류 발생: {e}")
print("CPU 모드로 진행합니다.")
except ImportError:
print("spaces 모듈을 불러올 수 없습니다. Spaces 환경이 아닐 수 있습니다.")
GPU_AVAILABLE = torch.cuda.is_available()
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
# Spaces 환경이 아닐 경우, VRAM 확인
if not IN_HF_SPACE:
try:
if torch.cuda.is_available():
free_mem_gb = get_cuda_free_memory_gb(gpu)
print(f'남은 VRAM: {free_mem_gb} GB')
else:
free_mem_gb = 6.0 # 기본값
print("CUDA를 사용할 수 없으므로 기본 메모리 설정을 사용합니다.")
except Exception as e:
free_mem_gb = 6.0
print(f"CUDA 메모리 확인 중 오류 발생: {e} / 기본값 사용")
high_vram = free_mem_gb > 60
print(f'high_vram 모드: {high_vram}')
else:
# Spaces 환경에서 기본값 설정
print("Spaces 환경에서 기본 메모리 설정 사용")
try:
if GPU_AVAILABLE:
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9
high_vram = free_mem_gb > 10 # 조금 더 보수적으로 설정
else:
free_mem_gb = 6.0
high_vram = False
except Exception as e:
print(f"GPU 메모리 확인 중 오류: {e}")
free_mem_gb = 6.0
high_vram = False
print(f'GPU 메모리: {free_mem_gb:.2f} GB, High-VRAM 모드: {high_vram}')
# 전역 모델 참조
models = {}
cpu_fallback_mode = not GPU_AVAILABLE # GPU가 불가능하면 CPU 모드로
def load_models():
global models, cpu_fallback_mode, GPU_INITIALIZED
if GPU_INITIALIZED:
print("모델이 이미 로드되었습니다. 다시 로드하지 않습니다.")
return models
print("모델 로드를 시작합니다...")
try:
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
model_device = 'cpu' # 우선 CPU에 로드
# 기본적으로 GPU면 float16, CPU면 float32
dtype = torch.float16 if GPU_AVAILABLE else torch.float32
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
print(f"사용 디바이스: {device}, vae/text encoder dtype: {dtype}, transformer dtype: {transformer_dtype}")
try:
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to(model_device)
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to(model_device)
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to(model_device)
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to(model_device)
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to(model_device)
print("모든 모델을 성공적으로 로드했습니다.")
except Exception as e:
print(f"모델 로드 중 오류 발생: {e}")
print("정밀도를 낮춰 다시 로드합니다...")
dtype = torch.float32
transformer_dtype = torch.float32
cpu_fallback_mode = True
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to('cpu')
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to('cpu')
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to('cpu')
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to('cpu')
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to('cpu')
print("CPU 모드로 모델 로드 성공")
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
if not high_vram or cpu_fallback_mode:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')
if not cpu_fallback_mode:
transformer.to(dtype=transformer_dtype)
vae.to(dtype=dtype)
image_encoder.to(dtype=dtype)
text_encoder.to(dtype=dtype)
text_encoder_2.to(dtype=dtype)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
if torch.cuda.is_available() and not cpu_fallback_mode:
try:
if not high_vram:
# 메모리 최적화
DynamicSwapInstaller.install_model(transformer, device=device)
DynamicSwapInstaller.install_model(text_encoder, device=device)
else:
text_encoder.to(device)
text_encoder_2.to(device)
image_encoder.to(device)
vae.to(device)
transformer.to(device)
print(f"모델을 {device}로 이동 완료")
except Exception as e:
print(f"{device}로 모델 이동 중 오류 발생: {e}")
print("CPU 모드로 전환")
cpu_fallback_mode = True
models_local = {
'text_encoder': text_encoder,
'text_encoder_2': text_encoder_2,
'tokenizer': tokenizer,
'tokenizer_2': tokenizer_2,
'vae': vae,
'feature_extractor': feature_extractor,
'image_encoder': image_encoder,
'transformer': transformer
}
GPU_INITIALIZED = True
models.update(models_local)
print(f"모델 로드 완료. 현재 실행 모드: {'CPU' if cpu_fallback_mode else 'GPU'}")
return models
except Exception as e:
print(f"모델 로드 중 예상치 못한 오류가 발생: {e}")
traceback.print_exc()
error_info = {
"error": str(e),
"traceback": traceback.format_exc(),
"cuda_available": torch.cuda.is_available(),
"device": "cpu" if cpu_fallback_mode else "cuda",
}
try:
with open(os.path.join(outputs_folder, "error_log.txt"), "w") as f:
f.write(str(error_info))
except:
pass
cpu_fallback_mode = True
return {}
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
try:
@spaces.GPU
def initialize_models():
"""@spaces.GPU 환경에서 모델을 초기화"""
global GPU_INITIALIZED
try:
result = load_models()
GPU_INITIALIZED = True
return result
except Exception as e:
print(f"@spaces.GPU 모델 초기화 중 오류: {e}")
traceback.print_exc()
global cpu_fallback_mode
cpu_fallback_mode = True
return load_models()
except Exception as e:
print(f"spaces.GPU 데코레이터 생성 중 오류: {e}")
def initialize_models():
return load_models()
def get_models():
"""모델을 불러오거나 이미 불러왔다면 반환"""
global models, GPU_INITIALIZED
model_loading_key = "__model_loading__"
if not models:
if model_loading_key in globals():
print("모델 로딩 중입니다. 대기 중...")
import time
start_wait = time.time()
while not models and model_loading_key in globals():
time.sleep(0.5)
if time.time() - start_wait > 60:
print("모델 로딩 대기 시간 초과")
break
if models:
return models
try:
globals()[model_loading_key] = True
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
try:
print("GPU 데코레이터(@spaces.GPU)로 모델 로딩 시도")
models_local = initialize_models()
models.update(models_local)
except Exception as e:
print(f"GPU 데코레이터 로딩 실패: {e} / 직접 로딩 시도")
models_local = load_models()
models.update(models_local)
else:
print("모델 직접 로딩 시도")
models_local = load_models()
models.update(models_local)
except Exception as e:
print(f"모델 로드 중 오류: {e}")
traceback.print_exc()
models.clear()
finally:
if model_loading_key in globals():
del globals()[model_loading_key]
return models
stream = AsyncStream()
@torch.no_grad()
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
global last_update_time
last_update_time = time.time()
total_second_length = min(total_second_length, 5.0)
try:
models_local = get_models()
if not models_local:
error_msg = "모델 로드에 실패했습니다. 로그를 확인하세요."
print(error_msg)
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
text_encoder = models_local['text_encoder']
text_encoder_2 = models_local['text_encoder_2']
tokenizer = models_local['tokenizer']
tokenizer_2 = models_local['tokenizer_2']
vae = models_local['vae']
feature_extractor = models_local['feature_extractor']
image_encoder = models_local['image_encoder']
transformer = models_local['transformer']
except Exception as e:
error_msg = f"모델 가져오기 실패: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
print(f"추론 디바이스: {device}")
if cpu_fallback_mode:
print("CPU 모드에서 일부 파라미터를 축소합니다.")
latent_window_size = min(latent_window_size, 5)
steps = min(steps, 15)
total_second_length = min(total_second_length, 2.0)
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
job_id = generate_timestamp()
last_output_filename = None
history_pixels = None
history_latents = None
total_generated_latent_frames = 0
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
except Exception as e:
print(f"모델 언로드 중 오류: {e}")
# 텍스트 인코딩
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
try:
if not high_vram and not cpu_fallback_mode:
fake_diffusers_current_device(text_encoder, device)
load_model_as_complete(text_encoder_2, target_device=device)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
except Exception as e:
error_msg = f"텍스트 인코딩 오류: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# 입력 이미지 처리
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
try:
H, W, C = input_image.shape
height, width = find_nearest_bucket(H, W, resolution=640)
if cpu_fallback_mode:
height = min(height, 320)
width = min(width, 320)
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
except Exception as e:
error_msg = f"이미지 전처리 오류: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# VAE 인코딩
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
try:
if not high_vram and not cpu_fallback_mode:
load_model_as_complete(vae, target_device=device)
start_latent = vae_encode(input_image_pt, vae)
except Exception as e:
error_msg = f"VAE 인코딩 오류: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# CLIP Vision 인코딩
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
try:
if not high_vram and not cpu_fallback_mode:
load_model_as_complete(image_encoder, target_device=device)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
except Exception as e:
error_msg = f"CLIP Vision 인코딩 오류: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# dtype 변환
try:
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
except Exception as e:
error_msg = f"dtype 변환 오류: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# 샘플링 진행
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
num_frames = latent_window_size * 4 - 3
try:
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
history_pixels = None
total_generated_latent_frames = 0
except Exception as e:
error_msg = f"히스토리 상태 초기화 오류: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
latent_paddings = reversed(range(total_latent_sections))
if total_latent_sections > 4:
latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0]
for latent_padding in latent_paddings:
last_update_time = time.time()
is_last_section = latent_padding == 0
latent_padding_size = latent_padding * latent_window_size
if stream.input_queue.top() == 'end':
# 중단 신호 수신 시 부분 결과 반환
if history_pixels is not None and total_generated_latent_frames > 0:
try:
output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
stream.output_queue.push(('file', output_filename))
except Exception as e:
print(f"마지막 비디오 저장 오류: {e}")
stream.output_queue.push(('end', None))
return
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
try:
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
clean_latents_pre = start_latent.to(history_latents)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
except Exception as e:
error_msg = f"샘플링 데이터 준비 오류: {e}"
print(error_msg)
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
continue
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation)
except Exception as e:
print(f"transformer GPU 이동 오류: {e}")
if use_teacache and not cpu_fallback_mode:
try:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
except Exception as e:
print(f"teacache 초기화 오류: {e}")
transformer.initialize_teacache(enable_teacache=False)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
global last_update_time
last_update_time = time.time()
try:
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('사용자 중단 요청')
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30).'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
except KeyboardInterrupt:
raise
except Exception as e:
print(f"콜백 중 오류: {e}")
return
try:
sampling_start_time = time.time()
print(f"샘플링 시작, device: {device}, dtype: {transformer.dtype}, TeaCache: {use_teacache and not cpu_fallback_mode}")
try:
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=num_frames,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=device,
dtype=transformer.dtype,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
print(f"샘플링 완료. 소요 시간: {time.time() - sampling_start_time:.2f} 초")
except KeyboardInterrupt as e:
print(f"사용자 중단: {e}")
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
error_msg = "사용자에 의해 중단되었지만, 일부 비디오가 생성되었습니다."
else:
error_msg = "사용자에 의해 중단되었습니다. 비디오가 생성되지 않았습니다."
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
except Exception as e:
print(f"샘플링 중 오류: {e}")
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
error_msg = f"샘플링 중 오류(일부 비디오 생성됨): {e}"
stream.output_queue.push(('error', error_msg))
else:
error_msg = f"샘플링 중 오류: {e}"
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
try:
if is_last_section:
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
except Exception as e:
error_msg = f"생성된 잠재 변수 처리 오류: {e}"
print(error_msg)
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
if not high_vram and not cpu_fallback_mode:
try:
offload_model_from_device_for_memory_preservation(transformer, target_device=device, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=device)
except Exception as e:
print(f"모델 메모리 관리 오류: {e}")
try:
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
except Exception as e:
error_msg = f"히스토리 잠재 변수 처리 오류: {e}"
print(error_msg)
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
continue
try:
vae_start_time = time.time()
print(f"VAE 디코딩 시작, 잠재 변수 크기: {real_history_latents.shape}")
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
print(f"VAE 디코딩 완료, 소요 시간: {time.time() - vae_start_time:.2f} 초")
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models()
except Exception as e:
print(f"모델 언로드 중 오류: {e}")
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
save_start_time = time.time()
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
print(f"비디오 저장 완료, 소요 시간: {time.time() - save_start_time:.2f} 초")
print(f'디코딩 완료. 현재 latent 크기: {real_history_latents.shape}, pixel 크기: {history_pixels.shape}')
last_output_filename = output_filename
stream.output_queue.push(('file', output_filename))
except Exception as e:
print(f"비디오 디코딩/저장 중 오류: {e}")
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
error_msg = f"비디오 디코딩/저장 오류: {e}"
stream.output_queue.push(('error', error_msg))
continue
if is_last_section:
break
except Exception as e:
print(f"처리 중 오류 발생: {e} (type: {type(e)})")
traceback.print_exc()
if isinstance(e, KeyboardInterrupt):
print("KeyboardInterrupt 발생")
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
except Exception as unload_error:
print(f"언로드 오류: {unload_error}")
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
error_msg = f"처리 중 오류: {e}"
stream.output_queue.push(('error', error_msg))
print("worker 함수 종료, 'end' 신호 전송")
stream.output_queue.push(('end', None))
return
if IN_HF_SPACE and 'spaces' in globals():
@spaces.GPU
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
global stream
assert input_image is not None, 'No input image!'
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
try:
stream = AsyncStream()
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
output_filename = None
prev_output_filename = None
error_message = None
while True:
try:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
prev_output_filename = output_filename
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
if flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
if flag == 'error':
error_message = data
print(f"오류 메시지 수신: {error_message}")
if flag == 'end':
if output_filename is None and prev_output_filename is not None:
output_filename = prev_output_filename
if error_message:
error_html = create_error_html(error_message)
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
else:
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"출력 처리 중 오류: {e}")
current_time = time.time()
if current_time - last_update_time > 60:
print(f"처리가 {current_time - last_update_time:.1f}초 동안 정지됨. 타임아웃으로 간주.")
if prev_output_filename:
error_html = create_error_html("처리 시간이 초과되었지만 일부 동영상이 생성되었습니다.", is_timeout=True)
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
else:
error_html = create_error_html(f"처리 시간 초과: {e}", is_timeout=True)
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"프로세스 시작 오류: {e}")
traceback.print_exc()
error_msg = str(e)
error_html = create_error_html(error_msg)
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
process = process_with_gpu
else:
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
global stream
assert input_image is not None, 'No input image!'
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
try:
stream = AsyncStream()
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
output_filename = None
prev_output_filename = None
error_message = None
while True:
try:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
prev_output_filename = output_filename
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
if flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
if flag == 'error':
error_message = data
print(f"오류 메시지 수신: {error_message}")
if flag == 'end':
if output_filename is None and prev_output_filename is not None:
output_filename = prev_output_filename
if error_message:
error_html = create_error_html(error_message)
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
else:
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"출력 처리 중 오류: {e}")
current_time = time.time()
if current_time - last_update_time > 60:
print(f"{current_time - last_update_time:.1f}초 동안 진행이 없어 타임아웃으로 간주합니다.")
if prev_output_filename:
error_html = create_error_html("처리 시간이 초과되었지만 일부 동영상이 생성되었습니다.", is_timeout=True)
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
else:
error_html = create_error_html(f"처리 시간 초과: {e}", is_timeout=True)
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"프로세스 시작 오류: {e}")
traceback.print_exc()
error_msg = str(e)
error_html = create_error_html(error_msg)
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
def end_process():
print("사용자가 중지 버튼을 눌렀습니다. 종료 신호를 보냅니다...")
if 'stream' in globals() and stream is not None:
try:
current_top = stream.input_queue.top()
print(f"현재 입력 큐 top: {current_top}")
except Exception as e:
print(f"입력 큐 확인 오류: {e}")
try:
stream.input_queue.push('end')
print("end 신호 전송 완료")
try:
current_top_after = stream.input_queue.top()
print(f"신호 전송 후 입력 큐 top: {current_top_after}")
except Exception as e:
print(f"신호 전송 후 큐 상태 확인 오류: {e}")
except Exception as e:
print(f"end 신호 전송 오류: {e}")
else:
print("stream이 초기화되지 않아 종료 신호를 보낼 수 없습니다.")
return None
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]
def make_custom_css():
progress_bar_css = make_progress_bar_css()
responsive_css = """
/* progress_bar_css로부터 불러온 기본 설정 + 추가 */
#app-container {
max-width: 100%;
margin: 0 auto;
}
#language-toggle {
position: fixed;
top: 10px;
right: 10px;
z-index: 1000;
background-color: rgba(0, 0, 0, 0.7);
color: white;
border: none;
border-radius: 4px;
padding: 5px 10px;
cursor: pointer;
font-size: 14px;
}
h1 {
font-size: 2rem;
text-align: center;
margin-bottom: 1rem;
}
.start-btn, .stop-btn {
min-height: 45px;
font-size: 1rem;
}
@media (max-width: 768px) {
h1 {
font-size: 1.5rem;
margin-bottom: 0.5rem;
}
.mobile-full-width {
flex-direction: column !important;
}
.mobile-full-width > .gr-block {
min-width: 100% !important;
flex-grow: 1;
}
.video-container {
height: auto !important;
}
.button-container button {
min-height: 50px;
font-size: 1rem;
touch-action: manipulation;
}
.slider-container input[type="range"] {
height: 30px;
}
}
@media (min-width: 769px) and (max-width: 1024px) {
.tablet-adjust {
width: 48% !important;
}
}
@media (prefers-color-scheme: dark) {
.dark-mode-text {
color: #f0f0f0;
}
.dark-mode-bg {
background-color: #2a2a2a;
}
}
button, input, select, textarea {
font-size: 16px;
}
button, .interactive-element {
min-height: 44px;
min-width: 44px;
}
.high-contrast {
color: #fff;
background-color: #000;
}
.progress-container {
margin-top: 10px;
margin-bottom: 10px;
}
#error-message {
color: #ff4444;
font-weight: bold;
padding: 10px;
border-radius: 4px;
margin-top: 10px;
}
.error-message {
background-color: rgba(255, 0, 0, 0.1);
padding: 10px;
border-radius: 4px;
margin-top: 10px;
border: 1px solid #ffcccc;
}
.error-msg-en, .error-msg-ko {
font-weight: bold;
}
.error-icon {
color: #ff4444;
font-size: 18px;
margin-right: 8px;
}
#error-message:empty {
background-color: transparent;
border: none;
padding: 0;
margin: 0;
}
.error {
display: none !important;
}
"""
return progress_bar_css + responsive_css
css = make_custom_css()
block = gr.Blocks(css=css).queue()
with block:
gr.HTML("""
<div id="app-container">
<button id="language-toggle" onclick="toggleLanguage()">한국어 / English</button>
</div>
<script>
window.currentLang = "en";
function toggleLanguage() {
window.currentLang = (window.currentLang === "en") ? "ko" : "en";
const elements = document.querySelectorAll('[data-i18n]');
elements.forEach(el => {
const key = el.getAttribute('data-i18n');
const translations = {
"en": {
"title": "FramePack - Image to Video Generation",
"upload_image": "Upload Image",
"prompt": "Prompt",
"quick_prompts": "Quick Prompts",
"start_generation": "Generate",
"stop_generation": "Stop",
"use_teacache": "Use TeaCache",
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
"negative_prompt": "Negative Prompt",
"seed": "Seed",
"video_length": "Video Length (max 5 seconds)",
"latent_window": "Latent Window Size",
"steps": "Inference Steps",
"steps_info": "Changing this value is not recommended.",
"cfg_scale": "CFG Scale",
"distilled_cfg": "Distilled CFG Scale",
"distilled_cfg_info": "Changing this value is not recommended.",
"cfg_rescale": "CFG Rescale",
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
"next_latents": "Next Latents",
"generated_video": "Generated Video",
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
"error_message": "Error"
},
"ko": {
"title": "FramePack - 이미지에서 동영상 생성",
"upload_image": "이미지 업로드",
"prompt": "프롬프트",
"quick_prompts": "빠른 프롬프트 목록",
"start_generation": "생성 시작",
"stop_generation": "생성 중지",
"use_teacache": "TeaCache 사용",
"teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.",
"negative_prompt": "부정 프롬프트",
"seed": "랜덤 시드",
"video_length": "동영상 길이 (최대 5초)",
"latent_window": "잠재 윈도우 크기",
"steps": "추론 스텝 수",
"steps_info": "이 값을 변경하는 것은 권장되지 않습니다.",
"cfg_scale": "CFG 스케일",
"distilled_cfg": "증류된 CFG 스케일",
"distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.",
"cfg_rescale": "CFG 재스케일",
"gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)",
"gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.",
"next_latents": "다음 잠재 변수",
"generated_video": "생성된 동영상",
"sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 나타나지 않으면 기다려 주십시오.",
"error_message": "오류 메시지"
}
};
if (translations[window.currentLang] && translations[window.currentLang][key]) {
if (el.tagName === 'BUTTON') {
el.textContent = translations[window.currentLang][key];
} else if (el.tagName === 'LABEL') {
el.textContent = translations[window.currentLang][key];
} else {
el.innerHTML = translations[window.currentLang][key];
}
}
});
// bilingual-label 처리
document.querySelectorAll('.bilingual-label').forEach(el => {
const enText = el.getAttribute('data-en');
const koText = el.getAttribute('data-ko');
el.textContent = (window.currentLang === 'en') ? enText : koText;
});
// data-lang 처리
document.querySelectorAll('[data-lang]').forEach(el => {
el.style.display = (el.getAttribute('data-lang') === window.currentLang) ? 'block' : 'none';
});
}
document.addEventListener('DOMContentLoaded', function() {
setTimeout(() => {
// 매핑
const labelMap = {
"Upload Image": "upload_image",
"이미지 업로드": "upload_image",
"Prompt": "prompt",
"프롬프트": "prompt",
"Quick Prompts": "quick_prompts",
"빠른 프롬프트 목록": "quick_prompts",
"Generate": "start_generation",
"생성 시작": "start_generation",
"Stop": "stop_generation",
"생성 중지": "stop_generation"
};
document.querySelectorAll('label, span, button').forEach(el => {
const text = el.textContent.trim();
if (labelMap[text]) {
el.setAttribute('data-i18n', labelMap[text]);
}
});
const titleEl = document.querySelector('h1');
if (titleEl) titleEl.setAttribute('data-i18n', 'title');
toggleLanguage();
}, 1000);
});
</script>
""")
gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation</h1>")
with gr.Row(elem_classes="mobile-full-width"):
with gr.Column(scale=1, elem_classes="mobile-full-width"):
input_image = gr.Image(
sources='upload',
type="numpy",
label="Upload Image",
elem_id="input-image",
height=320
)
prompt = gr.Textbox(
label="Prompt",
value='',
elem_id="prompt-input"
)
example_quick_prompts = gr.Dataset(
samples=quick_prompts,
label='Quick Prompts',
samples_per_page=1000,
components=[prompt]
)
example_quick_prompts.click(
lambda x: x[0],
inputs=[example_quick_prompts],
outputs=prompt,
show_progress=False,
queue=False
)
with gr.Row(elem_classes="button-container"):
start_button = gr.Button(
value="Generate",
elem_classes="start-btn",
elem_id="start-button",
variant="primary"
)
end_button = gr.Button(
value="Stop",
elem_classes="stop-btn",
elem_id="stop-button",
interactive=False
)
with gr.Group():
use_teacache = gr.Checkbox(
label='Use TeaCache',
value=True,
info='Faster speed, but may result in slightly worse finger and hand generation.'
)
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
seed = gr.Number(
label="Seed",
value=31337,
precision=0
)
with gr.Group(elem_classes="slider-container"):
total_second_length = gr.Slider(
label="Video Length (max 5 seconds)",
minimum=1,
maximum=5,
value=5,
step=0.1
)
latent_window_size = gr.Slider(
label="Latent Window Size",
minimum=1,
maximum=33,
value=9,
step=1,
visible=False
)
steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=100,
value=25,
step=1,
info='Changing this value is not recommended.'
)
cfg = gr.Slider(
label="CFG Scale",
minimum=1.0,
maximum=32.0,
value=1.0,
step=0.01,
visible=False
)
gs = gr.Slider(
label="Distilled CFG Scale",
minimum=1.0,
maximum=32.0,
value=10.0,
step=0.01,
info='Changing this value is not recommended.'
)
rs = gr.Slider(
label="CFG Rescale",
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.01,
visible=False
)
gpu_memory_preservation = gr.Slider(
label="GPU Memory (GB)",
minimum=6,
maximum=128,
value=6,
step=0.1,
info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed."
)
with gr.Column(scale=1, elem_classes="mobile-full-width"):
preview_image = gr.Image(
label="Preview",
height=200,
visible=False,
elem_classes="preview-container"
)
result_video = gr.Video(
label="Generated Video",
autoplay=True,
show_share_button=True,
height=512,
loop=True,
elem_classes="video-container",
elem_id="result-video"
)
gr.HTML("<div data-i18n='sampling_note'>Note: Due to reversed sampling, ending actions will be generated before starting actions.</div>")
with gr.Group(elem_classes="progress-container"):
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
error_message = gr.HTML('', elem_id='error-message', visible=True)
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
start_button.click(fn=process, inputs=ips, outputs=[
result_video, preview_image, progress_desc, progress_bar, start_button, end_button
])
end_button.click(fn=end_process)
block.launch()
def create_error_html(error_msg, is_timeout=False):
en_msg = ""
ko_msg = ""
if is_timeout:
if "부분" in error_msg or "partial" in error_msg:
en_msg = "Processing timed out, but partial video has been generated."
ko_msg = "처리 시간이 초과되었지만 일부 동영상이 생성되었습니다."
else:
en_msg = f"Processing timed out: {error_msg}"
ko_msg = f"처리 시간 초과: {error_msg}"
elif "모델 로드" in error_msg:
en_msg = "Failed to load models. Possibly heavy traffic or GPU problem."
ko_msg = "모델 로드에 실패했습니다. 과도한 트래픽 또는 GPU 문제일 수 있습니다."
elif "GPU" in error_msg or "CUDA" in error_msg or "memory" in error_msg or "메모리" in error_msg:
en_msg = "GPU memory insufficient or error. Increase GPU memory preservation or reduce video length."
ko_msg = "GPU 메모리가 부족하거나 오류가 발생했습니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요."
elif "샘플링 중 오류" in error_msg or "sampling process" in error_msg:
if "부분" in error_msg or "partial" in error_msg:
en_msg = "Error during sampling, but partial video has been generated."
ko_msg = "샘플링 중 오류가 발생했지만 일부 동영상이 생성되었습니다."
else:
en_msg = "Error during sampling. Unable to generate video."
ko_msg = "샘플링 중 오류가 발생했습니다. 비디오 생성에 실패했습니다."
elif "네트워크" in error_msg or "Network" in error_msg or "ConnectionError" in error_msg or "ReadTimeoutError" in error_msg:
en_msg = "Network is unstable, model download timed out. Please try again later."
ko_msg = "네트워크가 불안정하여 모델 다운로드가 시간 초과되었습니다. 잠시 후 다시 시도해 주세요."
elif "VAE" in error_msg or "디코딩" in error_msg or "decode" in error_msg:
en_msg = "Error during video decoding or saving process. Try a different seed."
ko_msg = "비디오 디코딩/저장 중 오류가 발생했습니다. 다른 시드를 시도해보세요."
else:
en_msg = f"Processing error: {error_msg}"
ko_msg = f"처리 중 오류가 발생했습니다: {error_msg}"
return f"""
<div class="error-message" id="custom-error-container">
<div class="error-msg-en" data-lang="en">
<span class="error-icon">⚠️</span> {en_msg}
</div>
<div class="error-msg-ko" data-lang="ko">
<span class="error-icon">⚠️</span> {ko_msg}
</div>
</div>
<script>
(function() {{
const errorContainer = document.getElementById('custom-error-container');
if (errorContainer) {{
const currentLang = window.currentLang || 'en';
const errMsgs = errorContainer.querySelectorAll('[data-lang]');
errMsgs.forEach(msg => {{
msg.style.display = (msg.getAttribute('data-lang') === currentLang) ? 'block' : 'none';
}});
const defaultErrorElements = document.querySelectorAll('.error');
defaultErrorElements.forEach(el => {{
el.style.display = 'none';
}});
}}
}})();
</script>
"""
|