File size: 66,250 Bytes
50f328c
 
 
2a8ac85
 
 
 
 
 
50f328c
 
 
17a13c7
2a8ac85
 
 
 
 
 
 
 
 
 
 
 
8336ddb
2a8ac85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a13c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a8ac85
 
 
17a13c7
2a8ac85
 
 
17a13c7
2a8ac85
 
17a13c7
2a8ac85
 
17a13c7
2a8ac85
 
17a13c7
2a8ac85
 
50f328c
 
 
 
 
 
 
 
17a13c7
0f1d758
 
17a13c7
d4dcfc5
 
 
 
17a13c7
0f1d758
 
 
17a13c7
d4dcfc5
17a13c7
d4dcfc5
 
 
 
 
 
 
17a13c7
d4dcfc5
 
 
17a13c7
d4dcfc5
17a13c7
d4dcfc5
 
17a13c7
 
0f1d758
17a13c7
d4dcfc5
0f1d758
50f328c
 
 
 
 
 
 
cdbfba8
50f328c
 
 
 
 
 
cdbfba8
 
 
17a13c7
cdbfba8
 
 
 
17a13c7
cdbfba8
17a13c7
 
cdbfba8
17a13c7
 
cdbfba8
 
17a13c7
cdbfba8
17a13c7
 
d4dcfc5
 
17a13c7
 
d4dcfc5
17a13c7
d4dcfc5
 
17a13c7
 
d4dcfc5
 
17a13c7
50f328c
17a13c7
cdbfba8
17a13c7
50f328c
0f1d758
d4dcfc5
cdbfba8
d4dcfc5
17a13c7
d4dcfc5
0f1d758
17a13c7
 
d4dcfc5
 
17a13c7
 
 
d4dcfc5
 
 
17a13c7
d4dcfc5
 
 
 
 
 
 
 
 
 
 
 
 
17a13c7
d4dcfc5
17a13c7
 
 
d4dcfc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a13c7
d4dcfc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a13c7
d4dcfc5
 
 
 
 
 
 
 
17a13c7
d4dcfc5
17a13c7
 
d4dcfc5
17a13c7
 
d4dcfc5
 
 
 
 
 
 
 
 
 
 
17a13c7
 
d4dcfc5
 
17a13c7
d4dcfc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdbfba8
d4dcfc5
 
 
 
17a13c7
d4dcfc5
 
 
 
 
 
17a13c7
d4dcfc5
 
 
 
 
17a13c7
d4dcfc5
 
cdbfba8
 
17a13c7
d4dcfc5
0f1d758
6dcbefe
 
cdbfba8
6dcbefe
17a13c7
6dcbefe
d4dcfc5
6dcbefe
 
d4dcfc5
17a13c7
d4dcfc5
 
 
 
6dcbefe
 
 
 
d4dcfc5
 
17a13c7
 
 
d4dcfc5
17a13c7
 
 
6dcbefe
17a13c7
 
 
d4dcfc5
17a13c7
d4dcfc5
17a13c7
6dcbefe
 
 
cdbfba8
 
50f328c
cdbfba8
50f328c
 
 
d4dcfc5
 
 
8336ddb
 
d4dcfc5
17a13c7
 
 
d4dcfc5
 
 
 
 
17a13c7
 
 
 
 
 
 
 
d4dcfc5
17a13c7
d4dcfc5
 
 
 
 
 
 
17a13c7
 
d4dcfc5
17a13c7
d4dcfc5
17a13c7
 
cdbfba8
50f328c
 
 
 
6dcbefe
 
 
 
50f328c
 
 
 
d4dcfc5
 
 
 
 
 
17a13c7
 
 
d4dcfc5
50f328c
 
d4dcfc5
 
 
 
50f328c
d4dcfc5
50f328c
d4dcfc5
 
 
 
50f328c
d4dcfc5
 
 
17a13c7
d4dcfc5
 
 
 
 
50f328c
17a13c7
d4dcfc5
50f328c
 
d4dcfc5
 
 
 
 
 
 
 
 
 
50f328c
d4dcfc5
 
 
17a13c7
d4dcfc5
 
 
 
 
50f328c
17a13c7
d4dcfc5
50f328c
 
d4dcfc5
 
 
50f328c
d4dcfc5
 
17a13c7
d4dcfc5
 
 
 
 
50f328c
17a13c7
d4dcfc5
50f328c
 
d4dcfc5
 
 
50f328c
d4dcfc5
 
 
17a13c7
d4dcfc5
 
 
 
 
50f328c
17a13c7
d4dcfc5
 
 
 
 
 
 
17a13c7
d4dcfc5
 
 
 
 
50f328c
17a13c7
d4dcfc5
50f328c
 
 
 
 
d4dcfc5
 
 
 
 
17a13c7
d4dcfc5
 
 
 
 
50f328c
 
 
17a13c7
50f328c
 
d4dcfc5
50f328c
 
 
 
17a13c7
6dcbefe
 
 
 
 
 
17a13c7
6dcbefe
50f328c
 
 
 
 
d4dcfc5
 
 
 
50f328c
d4dcfc5
 
 
 
17a13c7
d4dcfc5
 
 
 
 
50f328c
d4dcfc5
 
 
 
 
17a13c7
50f328c
d4dcfc5
 
 
 
17a13c7
d4dcfc5
50f328c
 
 
 
d4dcfc5
 
 
 
17a13c7
 
 
 
d4dcfc5
 
50f328c
d4dcfc5
 
50f328c
d4dcfc5
 
 
17a13c7
d4dcfc5
17a13c7
da097bc
d4dcfc5
17a13c7
50f328c
 
6dcbefe
d4dcfc5
17a13c7
d4dcfc5
da097bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a13c7
1082c60
17a13c7
da097bc
 
17a13c7
da097bc
17a13c7
da097bc
 
 
 
6dcbefe
17a13c7
6dcbefe
 
 
17a13c7
d4dcfc5
 
17a13c7
d4dcfc5
6dcbefe
 
50f328c
d4dcfc5
 
 
50f328c
d4dcfc5
 
 
17a13c7
d4dcfc5
 
 
 
 
 
 
50f328c
d4dcfc5
 
 
 
 
17a13c7
50f328c
d4dcfc5
 
 
17a13c7
d4dcfc5
 
 
 
50f328c
6dcbefe
d4dcfc5
17a13c7
 
6dcbefe
 
 
 
 
50f328c
6dcbefe
 
50f328c
17a13c7
 
d4dcfc5
 
 
 
17a13c7
50f328c
6dcbefe
50f328c
d4dcfc5
6dcbefe
17a13c7
50f328c
17a13c7
50f328c
6dcbefe
 
 
17a13c7
6dcbefe
 
 
17a13c7
d4dcfc5
6dcbefe
50f328c
 
 
6dcbefe
17a13c7
50f328c
1082c60
 
17a13c7
50f328c
d4dcfc5
6dcbefe
 
 
 
1082c60
17a13c7
6dcbefe
 
 
d4dcfc5
17a13c7
d4dcfc5
50f328c
17a13c7
50f328c
 
 
217c6bd
 
 
 
 
0f1d758
217c6bd
0f1d758
6dcbefe
217c6bd
 
6dcbefe
217c6bd
 
 
0236769
217c6bd
 
 
 
 
 
 
 
 
 
 
 
d4dcfc5
217c6bd
 
17a13c7
217c6bd
 
 
 
 
 
 
 
 
 
 
 
17a13c7
217c6bd
17a13c7
 
217c6bd
17a13c7
217c6bd
 
17a13c7
217c6bd
 
 
17a13c7
217c6bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0236769
217c6bd
 
17a13c7
217c6bd
 
 
 
 
 
 
 
 
 
 
 
17a13c7
217c6bd
17a13c7
 
217c6bd
17a13c7
217c6bd
 
17a13c7
217c6bd
 
 
17a13c7
217c6bd
 
 
 
 
0f1d758
217c6bd
17a13c7
da097bc
1082c60
 
17a13c7
1082c60
17a13c7
1082c60
 
17a13c7
1082c60
 
17a13c7
1082c60
17a13c7
1082c60
17a13c7
da097bc
17a13c7
da097bc
6dcbefe
50f328c
 
 
 
 
 
ffb7037
 
 
 
17a13c7
 
ffb7037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a13c7
ffb7037
 
 
 
 
 
 
 
 
 
 
 
 
 
217c6bd
ffb7037
 
217c6bd
 
 
 
 
 
 
 
183a1ff
217c6bd
 
 
 
 
183a1ff
 
17a13c7
217c6bd
183a1ff
 
 
217c6bd
 
183a1ff
 
 
217c6bd
 
 
 
 
183a1ff
 
217c6bd
183a1ff
ffb7037
 
 
17a13c7
ffb7037
2a8ac85
50f328c
 
2a8ac85
 
17a13c7
2a8ac85
 
 
 
17a13c7
2a8ac85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8336ddb
2a8ac85
 
 
 
 
 
 
 
 
 
 
 
17a13c7
2a8ac85
17a13c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a8ac85
 
 
 
 
 
 
 
 
 
 
 
 
 
17a13c7
2a8ac85
 
17a13c7
 
2a8ac85
 
17a13c7
2a8ac85
17a13c7
2a8ac85
 
 
 
 
17a13c7
2a8ac85
 
17a13c7
2a8ac85
17a13c7
2a8ac85
17a13c7
 
 
2a8ac85
17a13c7
2a8ac85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a13c7
 
2a8ac85
 
 
 
 
 
17a13c7
2a8ac85
 
 
 
 
17a13c7
2a8ac85
 
 
 
 
 
17a13c7
2a8ac85
 
 
17a13c7
 
 
 
 
 
 
50f328c
2a8ac85
 
17a13c7
2a8ac85
 
 
 
 
 
17a13c7
2a8ac85
 
 
 
50f328c
 
2a8ac85
17a13c7
2a8ac85
17a13c7
2a8ac85
50f328c
17a13c7
2a8ac85
 
17a13c7
2a8ac85
 
 
17a13c7
2a8ac85
 
17a13c7
2a8ac85
8336ddb
2a8ac85
 
 
 
 
17a13c7
2a8ac85
 
 
 
 
 
 
 
17a13c7
2a8ac85
 
 
 
17a13c7
2a8ac85
 
 
 
 
 
 
 
 
 
 
 
17a13c7
2a8ac85
 
 
 
17a13c7
2a8ac85
 
 
17a13c7
2a8ac85
 
 
 
 
 
 
 
17a13c7
2a8ac85
 
 
 
17a13c7
2a8ac85
 
 
 
17a13c7
2a8ac85
 
 
 
 
 
17a13c7
2a8ac85
17a13c7
2a8ac85
 
 
 
 
 
17a13c7
2a8ac85
 
 
 
 
183a1ff
217c6bd
1064203
 
17a13c7
 
 
 
217c6bd
17a13c7
217c6bd
 
 
17a13c7
217c6bd
 
17a13c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217c6bd
17a13c7
 
 
 
 
 
 
 
217c6bd
 
17a13c7
217c6bd
 
 
 
 
 
17a13c7
 
217c6bd
 
 
 
 
 
17a13c7
217c6bd
 
17a13c7
217c6bd
 
 
 
 
 
 
 
17a13c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
from diffusers_helper.hf_login import login

import os
import threading
import time
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import json

os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))

# 영어/한국어 번역 딕셔너리
translations = {
    "en": {
        "title": "FramePack - Image to Video Generation",
        "upload_image": "Upload Image",
        "prompt": "Prompt",
        "quick_prompts": "Quick Prompts",
        "start_generation": "Generate",
        "stop_generation": "Stop",
        "use_teacache": "Use TeaCache",
        "teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
        "negative_prompt": "Negative Prompt",
        "seed": "Seed",
        "video_length": "Video Length (max 5 seconds)",
        "latent_window": "Latent Window Size",
        "steps": "Inference Steps",
        "steps_info": "Changing this value is not recommended.",
        "cfg_scale": "CFG Scale",
        "distilled_cfg": "Distilled CFG Scale",
        "distilled_cfg_info": "Changing this value is not recommended.",
        "cfg_rescale": "CFG Rescale",
        "gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
        "gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
        "next_latents": "Next Latents",
        "generated_video": "Generated Video",
        "sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
        "error_message": "Error",
        "processing_error": "Processing error",
        "network_error": "Network connection is unstable, model download timed out. Please try again later.",
        "memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
        "model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
        "partial_video": "Processing error, but partial video has been generated",
        "processing_interrupt": "Processing was interrupted, but partial video has been generated"
    },
    "ko": {
        "title": "FramePack - 이미지에서 동영상 생성",
        "upload_image": "이미지 업로드",
        "prompt": "프롬프트",
        "quick_prompts": "빠른 프롬프트 목록",
        "start_generation": "생성 시작",
        "stop_generation": "생성 중지",
        "use_teacache": "TeaCache 사용",
        "teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.",
        "negative_prompt": "부정 프롬프트",
        "seed": "랜덤 시드",
        "video_length": "동영상 길이 (최대 5초)",
        "latent_window": "잠재 윈도우 크기",
        "steps": "추론 스텝 수",
        "steps_info": "이 값을 변경하는 것은 권장되지 않습니다.",
        "cfg_scale": "CFG 스케일",
        "distilled_cfg": "증류된 CFG 스케일",
        "distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.",
        "cfg_rescale": "CFG 재스케일",
        "gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)",
        "gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.",
        "next_latents": "다음 잠재 변수",
        "generated_video": "생성된 동영상",
        "sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 동영상에 나타나지 않으면 기다려 주십시오. 나중에 생성됩니다.",
        "error_message": "오류 메시지",
        "processing_error": "처리 중 오류 발생",
        "network_error": "네트워크 연결이 불안정하여 모델 다운로드가 시간 초과되었습니다. 나중에 다시 시도해 주십시오.",
        "memory_error": "GPU 메모리가 부족합니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요.",
        "model_error": "모델 로드에 실패했습니다. 네트워크 문제 또는 서버 부하가 높을 수 있습니다. 나중에 다시 시도해 주십시오.",
        "partial_video": "처리 중 오류가 발생했지만 일부 동영상이 생성되었습니다.",
        "processing_interrupt": "처리 중 중단되었지만 일부 동영상이 생성되었습니다."
    }
}

# 다국어 텍스트를 반환하는 함수
def get_translation(key, lang="en"):
    if lang in translations and key in translations[lang]:
        return translations[lang][key]
    # 기본값(영어) 반환
    return translations["en"].get(key, key)

# 디폴트 언어를 영어로 설정
current_language = "en"

# 언어 전환 함수
def switch_language():
    global current_language
    current_language = "ko" if current_language == "en" else "en"
    return current_language

import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math

# Spaces 환경 체크
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None

# GPU 사용 여부 기록
GPU_AVAILABLE = False
GPU_INITIALIZED = False
last_update_time = time.time()

# Spaces 환경이라면, spaces 모듈 불러오기 시도
if IN_HF_SPACE:
    try:
        import spaces
        print("Hugging Face Space 환경에서 실행 중, spaces 모듈을 불러왔습니다.")
        
        # GPU 사용 가능 여부 확인
        try:
            GPU_AVAILABLE = torch.cuda.is_available()
            print(f"GPU available: {GPU_AVAILABLE}")
            if GPU_AVAILABLE:
                print(f"GPU device name: {torch.cuda.get_device_name(0)}")
                print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
                
                # 작은 테스트 연산으로 실제 GPU 동작 확인
                test_tensor = torch.zeros(1, device='cuda')
                test_tensor = test_tensor + 1
                del test_tensor
                print("GPU 테스트 연산 성공")
            else:
                print("경고: CUDA는 가능하다고 하나 실제 GPU 디바이스를 찾을 수 없습니다.")
        except Exception as e:
            GPU_AVAILABLE = False
            print(f"GPU 확인 중 오류 발생: {e}")
            print("CPU 모드로 진행합니다.")
    except ImportError:
        print("spaces 모듈을 불러올 수 없습니다. Spaces 환경이 아닐 수 있습니다.")
        GPU_AVAILABLE = torch.cuda.is_available()

from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket

outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)

# Spaces 환경이 아닐 경우, VRAM 확인
if not IN_HF_SPACE:
    try:
        if torch.cuda.is_available():
            free_mem_gb = get_cuda_free_memory_gb(gpu)
            print(f'남은 VRAM: {free_mem_gb} GB')
        else:
            free_mem_gb = 6.0  # 기본값
            print("CUDA를 사용할 수 없으므로 기본 메모리 설정을 사용합니다.")
    except Exception as e:
        free_mem_gb = 6.0
        print(f"CUDA 메모리 확인 중 오류 발생: {e} / 기본값 사용")
        
    high_vram = free_mem_gb > 60
    print(f'high_vram 모드: {high_vram}')
else:
    # Spaces 환경에서 기본값 설정
    print("Spaces 환경에서 기본 메모리 설정 사용")
    try:
        if GPU_AVAILABLE:
            free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9
            high_vram = free_mem_gb > 10  # 조금 더 보수적으로 설정
        else:
            free_mem_gb = 6.0
            high_vram = False
    except Exception as e:
        print(f"GPU 메모리 확인 중 오류: {e}")
        free_mem_gb = 6.0
        high_vram = False
    
    print(f'GPU 메모리: {free_mem_gb:.2f} GB, High-VRAM 모드: {high_vram}')

# 전역 모델 참조
models = {}
cpu_fallback_mode = not GPU_AVAILABLE  # GPU가 불가능하면 CPU 모드로

def load_models():
    global models, cpu_fallback_mode, GPU_INITIALIZED
    
    if GPU_INITIALIZED:
        print("모델이 이미 로드되었습니다. 다시 로드하지 않습니다.")
        return models
    
    print("모델 로드를 시작합니다...")

    try:
        device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
        model_device = 'cpu'  # 우선 CPU에 로드

        # 기본적으로 GPU면 float16, CPU면 float32
        dtype = torch.float16 if GPU_AVAILABLE else torch.float32
        transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
        
        print(f"사용 디바이스: {device}, vae/text encoder dtype: {dtype}, transformer dtype: {transformer_dtype}")
        
        try:
            text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to(model_device)
            text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to(model_device)
            tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
            tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
            vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to(model_device)

            feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
            image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to(model_device)

            transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to(model_device)
            
            print("모든 모델을 성공적으로 로드했습니다.")
        except Exception as e:
            print(f"모델 로드 중 오류 발생: {e}")
            print("정밀도를 낮춰 다시 로드합니다...")

            dtype = torch.float32
            transformer_dtype = torch.float32
            cpu_fallback_mode = True
            
            text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to('cpu')
            text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to('cpu')
            tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
            tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
            vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to('cpu')

            feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
            image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to('cpu')

            transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to('cpu')
            
            print("CPU 모드로 모델 로드 성공")

        vae.eval()
        text_encoder.eval()
        text_encoder_2.eval()
        image_encoder.eval()
        transformer.eval()

        if not high_vram or cpu_fallback_mode:
            vae.enable_slicing()
            vae.enable_tiling()

        transformer.high_quality_fp32_output_for_inference = True
        print('transformer.high_quality_fp32_output_for_inference = True')

        if not cpu_fallback_mode:
            transformer.to(dtype=transformer_dtype)
            vae.to(dtype=dtype)
            image_encoder.to(dtype=dtype)
            text_encoder.to(dtype=dtype)
            text_encoder_2.to(dtype=dtype)

        vae.requires_grad_(False)
        text_encoder.requires_grad_(False)
        text_encoder_2.requires_grad_(False)
        image_encoder.requires_grad_(False)
        transformer.requires_grad_(False)

        if torch.cuda.is_available() and not cpu_fallback_mode:
            try:
                if not high_vram:
                    # 메모리 최적화
                    DynamicSwapInstaller.install_model(transformer, device=device)
                    DynamicSwapInstaller.install_model(text_encoder, device=device)
                else:
                    text_encoder.to(device)
                    text_encoder_2.to(device)
                    image_encoder.to(device)
                    vae.to(device)
                    transformer.to(device)
                print(f"모델을 {device}로 이동 완료")
            except Exception as e:
                print(f"{device}로 모델 이동 중 오류 발생: {e}")
                print("CPU 모드로 전환")
                cpu_fallback_mode = True

        models_local = {
            'text_encoder': text_encoder,
            'text_encoder_2': text_encoder_2,
            'tokenizer': tokenizer,
            'tokenizer_2': tokenizer_2,
            'vae': vae,
            'feature_extractor': feature_extractor,
            'image_encoder': image_encoder,
            'transformer': transformer
        }
        
        GPU_INITIALIZED = True
        models.update(models_local)
        print(f"모델 로드 완료. 현재 실행 모드: {'CPU' if cpu_fallback_mode else 'GPU'}")
        return models
    except Exception as e:
        print(f"모델 로드 중 예상치 못한 오류가 발생: {e}")
        traceback.print_exc()
        
        error_info = {
            "error": str(e),
            "traceback": traceback.format_exc(),
            "cuda_available": torch.cuda.is_available(),
            "device": "cpu" if cpu_fallback_mode else "cuda",
        }
        
        try:
            with open(os.path.join(outputs_folder, "error_log.txt"), "w") as f:
                f.write(str(error_info))
        except:
            pass
            
        cpu_fallback_mode = True
        return {}

if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
    try:
        @spaces.GPU
        def initialize_models():
            """@spaces.GPU 환경에서 모델을 초기화"""
            global GPU_INITIALIZED
            try:
                result = load_models()
                GPU_INITIALIZED = True
                return result
            except Exception as e:
                print(f"@spaces.GPU 모델 초기화 중 오류: {e}")
                traceback.print_exc()
                global cpu_fallback_mode
                cpu_fallback_mode = True
                return load_models()
    except Exception as e:
        print(f"spaces.GPU 데코레이터 생성 중 오류: {e}")
        def initialize_models():
            return load_models()

def get_models():
    """모델을 불러오거나 이미 불러왔다면 반환"""
    global models, GPU_INITIALIZED
    
    model_loading_key = "__model_loading__"
    
    if not models:
        if model_loading_key in globals():
            print("모델 로딩 중입니다. 대기 중...")
            import time
            start_wait = time.time()
            while not models and model_loading_key in globals():
                time.sleep(0.5)
                if time.time() - start_wait > 60:
                    print("모델 로딩 대기 시간 초과")
                    break
            
            if models:
                return models
            
        try:
            globals()[model_loading_key] = True
            
            if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
                try:
                    print("GPU 데코레이터(@spaces.GPU)로 모델 로딩 시도")
                    models_local = initialize_models()
                    models.update(models_local)
                except Exception as e:
                    print(f"GPU 데코레이터 로딩 실패: {e} / 직접 로딩 시도")
                    models_local = load_models()
                    models.update(models_local)
            else:
                print("모델 직접 로딩 시도")
                models_local = load_models()
                models.update(models_local)
        except Exception as e:
            print(f"모델 로드 중 오류: {e}")
            traceback.print_exc()
            models.clear()
        finally:
            if model_loading_key in globals():
                del globals()[model_loading_key]
    
    return models

stream = AsyncStream()

@torch.no_grad()
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
    global last_update_time
    last_update_time = time.time()
    
    total_second_length = min(total_second_length, 5.0)
    
    try:
        models_local = get_models()
        if not models_local:
            error_msg = "모델 로드에 실패했습니다. 로그를 확인하세요."
            print(error_msg)
            stream.output_queue.push(('error', error_msg))
            stream.output_queue.push(('end', None))
            return
        
        text_encoder = models_local['text_encoder']
        text_encoder_2 = models_local['text_encoder_2']
        tokenizer = models_local['tokenizer']
        tokenizer_2 = models_local['tokenizer_2']
        vae = models_local['vae']
        feature_extractor = models_local['feature_extractor']
        image_encoder = models_local['image_encoder']
        transformer = models_local['transformer']
    except Exception as e:
        error_msg = f"모델 가져오기 실패: {e}"
        print(error_msg)
        traceback.print_exc()
        stream.output_queue.push(('error', error_msg))
        stream.output_queue.push(('end', None))
        return
    
    device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
    print(f"추론 디바이스: {device}")

    if cpu_fallback_mode:
        print("CPU 모드에서 일부 파라미터를 축소합니다.")
        latent_window_size = min(latent_window_size, 5)
        steps = min(steps, 15)
        total_second_length = min(total_second_length, 2.0)
    
    total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
    total_latent_sections = int(max(round(total_latent_sections), 1))

    job_id = generate_timestamp()
    last_output_filename = None
    history_pixels = None
    history_latents = None
    total_generated_latent_frames = 0

    stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))

    try:
        if not high_vram and not cpu_fallback_mode:
            try:
                unload_complete_models(
                    text_encoder, text_encoder_2, image_encoder, vae, transformer
                )
            except Exception as e:
                print(f"모델 언로드 중 오류: {e}")
        
        # 텍스트 인코딩
        last_update_time = time.time()
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))

        try:
            if not high_vram and not cpu_fallback_mode:
                fake_diffusers_current_device(text_encoder, device)
                load_model_as_complete(text_encoder_2, target_device=device)

            llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)

            if cfg == 1:
                llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
            else:
                llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)

            llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
            llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
        except Exception as e:
            error_msg = f"텍스트 인코딩 오류: {e}"
            print(error_msg)
            traceback.print_exc()
            stream.output_queue.push(('error', error_msg))
            stream.output_queue.push(('end', None))
            return

        # 입력 이미지 처리
        last_update_time = time.time()
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))

        try:
            H, W, C = input_image.shape
            height, width = find_nearest_bucket(H, W, resolution=640)
            
            if cpu_fallback_mode:
                height = min(height, 320)
                width = min(width, 320)
                
            input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
            Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))

            input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
            input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
        except Exception as e:
            error_msg = f"이미지 전처리 오류: {e}"
            print(error_msg)
            traceback.print_exc()
            stream.output_queue.push(('error', error_msg))
            stream.output_queue.push(('end', None))
            return

        # VAE 인코딩
        last_update_time = time.time()
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))

        try:
            if not high_vram and not cpu_fallback_mode:
                load_model_as_complete(vae, target_device=device)

            start_latent = vae_encode(input_image_pt, vae)
        except Exception as e:
            error_msg = f"VAE 인코딩 오류: {e}"
            print(error_msg)
            traceback.print_exc()
            stream.output_queue.push(('error', error_msg))
            stream.output_queue.push(('end', None))
            return

        # CLIP Vision 인코딩
        last_update_time = time.time()
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))

        try:
            if not high_vram and not cpu_fallback_mode:
                load_model_as_complete(image_encoder, target_device=device)

            image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
            image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
        except Exception as e:
            error_msg = f"CLIP Vision 인코딩 오류: {e}"
            print(error_msg)
            traceback.print_exc()
            stream.output_queue.push(('error', error_msg))
            stream.output_queue.push(('end', None))
            return

        # dtype 변환
        try:
            llama_vec = llama_vec.to(transformer.dtype)
            llama_vec_n = llama_vec_n.to(transformer.dtype)
            clip_l_pooler = clip_l_pooler.to(transformer.dtype)
            clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
            image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
        except Exception as e:
            error_msg = f"dtype 변환 오류: {e}"
            print(error_msg)
            traceback.print_exc()
            stream.output_queue.push(('error', error_msg))
            stream.output_queue.push(('end', None))
            return

        # 샘플링 진행
        last_update_time = time.time()
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))

        rnd = torch.Generator("cpu").manual_seed(seed)
        num_frames = latent_window_size * 4 - 3

        try:
            history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
            history_pixels = None
            total_generated_latent_frames = 0
        except Exception as e:
            error_msg = f"히스토리 상태 초기화 오류: {e}"
            print(error_msg)
            traceback.print_exc()
            stream.output_queue.push(('error', error_msg))
            stream.output_queue.push(('end', None))
            return

        latent_paddings = reversed(range(total_latent_sections))
        if total_latent_sections > 4:
            latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0]

        for latent_padding in latent_paddings:
            last_update_time = time.time()
            is_last_section = latent_padding == 0
            latent_padding_size = latent_padding * latent_window_size

            if stream.input_queue.top() == 'end':
                # 중단 신호 수신 시 부분 결과 반환
                if history_pixels is not None and total_generated_latent_frames > 0:
                    try:
                        output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4')
                        save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
                        stream.output_queue.push(('file', output_filename))
                    except Exception as e:
                        print(f"마지막 비디오 저장 오류: {e}")
                
                stream.output_queue.push(('end', None))
                return

            print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')

            try:
                indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
                clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
                clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)

                clean_latents_pre = start_latent.to(history_latents)
                clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
                clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
            except Exception as e:
                error_msg = f"샘플링 데이터 준비 오류: {e}"
                print(error_msg)
                traceback.print_exc()
                if last_output_filename:
                    stream.output_queue.push(('file', last_output_filename))
                continue

            if not high_vram and not cpu_fallback_mode:
                try:
                    unload_complete_models()
                    move_model_to_device_with_memory_preservation(transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation)
                except Exception as e:
                    print(f"transformer GPU 이동 오류: {e}")

            if use_teacache and not cpu_fallback_mode:
                try:
                    transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
                except Exception as e:
                    print(f"teacache 초기화 오류: {e}")
                    transformer.initialize_teacache(enable_teacache=False)
            else:
                transformer.initialize_teacache(enable_teacache=False)

            def callback(d):
                global last_update_time
                last_update_time = time.time()
                
                try:
                    if stream.input_queue.top() == 'end':
                        stream.output_queue.push(('end', None))
                        raise KeyboardInterrupt('사용자 중단 요청')

                    preview = d['denoised']
                    preview = vae_decode_fake(preview)

                    preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
                    preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')

                    current_step = d['i'] + 1
                    percentage = int(100.0 * current_step / steps)
                    hint = f'Sampling {current_step}/{steps}'
                    desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30).'
                    stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
                except KeyboardInterrupt:
                    raise
                except Exception as e:
                    print(f"콜백 중 오류: {e}")
                return

            try:
                sampling_start_time = time.time()
                print(f"샘플링 시작, device: {device}, dtype: {transformer.dtype}, TeaCache: {use_teacache and not cpu_fallback_mode}")
                
                try:
                    generated_latents = sample_hunyuan(
                        transformer=transformer,
                        sampler='unipc',
                        width=width,
                        height=height,
                        frames=num_frames,
                        real_guidance_scale=cfg,
                        distilled_guidance_scale=gs,
                        guidance_rescale=rs,
                        num_inference_steps=steps,
                        generator=rnd,
                        prompt_embeds=llama_vec,
                        prompt_embeds_mask=llama_attention_mask,
                        prompt_poolers=clip_l_pooler,
                        negative_prompt_embeds=llama_vec_n,
                        negative_prompt_embeds_mask=llama_attention_mask_n,
                        negative_prompt_poolers=clip_l_pooler_n,
                        device=device,
                        dtype=transformer.dtype,
                        image_embeddings=image_encoder_last_hidden_state,
                        latent_indices=latent_indices,
                        clean_latents=clean_latents,
                        clean_latent_indices=clean_latent_indices,
                        clean_latents_2x=clean_latents_2x,
                        clean_latent_2x_indices=clean_latent_2x_indices,
                        clean_latents_4x=clean_latents_4x,
                        clean_latent_4x_indices=clean_latent_4x_indices,
                        callback=callback,
                    )
                    
                    print(f"샘플링 완료. 소요 시간: {time.time() - sampling_start_time:.2f} 초")
                except KeyboardInterrupt as e:
                    print(f"사용자 중단: {e}")
                    if last_output_filename:
                        stream.output_queue.push(('file', last_output_filename))
                        error_msg = "사용자에 의해 중단되었지만, 일부 비디오가 생성되었습니다."
                    else:
                        error_msg = "사용자에 의해 중단되었습니다. 비디오가 생성되지 않았습니다."
                    
                    stream.output_queue.push(('error', error_msg))
                    stream.output_queue.push(('end', None))
                    return
            except Exception as e:
                print(f"샘플링 중 오류: {e}")
                traceback.print_exc()
                if last_output_filename:
                    stream.output_queue.push(('file', last_output_filename))
                    error_msg = f"샘플링 중 오류(일부 비디오 생성됨): {e}"
                    stream.output_queue.push(('error', error_msg))
                else:
                    error_msg = f"샘플링 중 오류: {e}"
                    stream.output_queue.push(('error', error_msg))
                stream.output_queue.push(('end', None))
                return

            try:
                if is_last_section:
                    generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)

                total_generated_latent_frames += int(generated_latents.shape[2])
                history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
            except Exception as e:
                error_msg = f"생성된 잠재 변수 처리 오류: {e}"
                print(error_msg)
                traceback.print_exc()
                if last_output_filename:
                    stream.output_queue.push(('file', last_output_filename))
                stream.output_queue.push(('error', error_msg))
                stream.output_queue.push(('end', None))
                return

            if not high_vram and not cpu_fallback_mode:
                try:
                    offload_model_from_device_for_memory_preservation(transformer, target_device=device, preserved_memory_gb=8)
                    load_model_as_complete(vae, target_device=device)
                except Exception as e:
                    print(f"모델 메모리 관리 오류: {e}")

            try:
                real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
            except Exception as e:
                error_msg = f"히스토리 잠재 변수 처리 오류: {e}"
                print(error_msg)
                if last_output_filename:
                    stream.output_queue.push(('file', last_output_filename))
                continue

            try:
                vae_start_time = time.time()
                print(f"VAE 디코딩 시작, 잠재 변수 크기: {real_history_latents.shape}")

                if history_pixels is None:
                    history_pixels = vae_decode(real_history_latents, vae).cpu()
                else:
                    section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
                    overlapped_frames = latent_window_size * 4 - 3

                    current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
                    history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)

                print(f"VAE 디코딩 완료, 소요 시간: {time.time() - vae_start_time:.2f} 초")

                if not high_vram and not cpu_fallback_mode:
                    try:
                        unload_complete_models()
                    except Exception as e:
                        print(f"모델 언로드 중 오류: {e}")

                output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')

                save_start_time = time.time()
                save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
                print(f"비디오 저장 완료, 소요 시간: {time.time() - save_start_time:.2f} 초")

                print(f'디코딩 완료. 현재 latent 크기: {real_history_latents.shape}, pixel 크기: {history_pixels.shape}')

                last_output_filename = output_filename
                stream.output_queue.push(('file', output_filename))
            except Exception as e:
                print(f"비디오 디코딩/저장 중 오류: {e}")
                traceback.print_exc()
                if last_output_filename:
                    stream.output_queue.push(('file', last_output_filename))
                error_msg = f"비디오 디코딩/저장 오류: {e}"
                stream.output_queue.push(('error', error_msg))
                continue

            if is_last_section:
                break
    except Exception as e:
        print(f"처리 중 오류 발생: {e} (type: {type(e)})")
        traceback.print_exc()
        
        if isinstance(e, KeyboardInterrupt):
            print("KeyboardInterrupt 발생")

        if not high_vram and not cpu_fallback_mode:
            try:
                unload_complete_models(
                    text_encoder, text_encoder_2, image_encoder, vae, transformer
                )
            except Exception as unload_error:
                print(f"언로드 오류: {unload_error}")
        
        if last_output_filename:
            stream.output_queue.push(('file', last_output_filename))
        
        error_msg = f"처리 중 오류: {e}"
        stream.output_queue.push(('error', error_msg))

    print("worker 함수 종료, 'end' 신호 전송")
    stream.output_queue.push(('end', None))
    return

if IN_HF_SPACE and 'spaces' in globals():
    @spaces.GPU
    def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
        global stream
        assert input_image is not None, 'No input image!'

        yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)

        try:
            stream = AsyncStream()
            async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)

            output_filename = None
            prev_output_filename = None
            error_message = None

            while True:
                try:
                    flag, data = stream.output_queue.next()

                    if flag == 'file':
                        output_filename = data
                        prev_output_filename = output_filename
                        yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)

                    if flag == 'progress':
                        preview, desc, html = data
                        yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
                    
                    if flag == 'error':
                        error_message = data
                        print(f"오류 메시지 수신: {error_message}")

                    if flag == 'end':
                        if output_filename is None and prev_output_filename is not None:
                            output_filename = prev_output_filename
                        
                        if error_message:
                            error_html = create_error_html(error_message)
                            yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
                        else:
                            yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
                        break
                except Exception as e:
                    print(f"출력 처리 중 오류: {e}")
                    current_time = time.time()
                    if current_time - last_update_time > 60:
                        print(f"처리가 {current_time - last_update_time:.1f}초 동안 정지됨. 타임아웃으로 간주.")
                        if prev_output_filename:
                            error_html = create_error_html("처리 시간이 초과되었지만 일부 동영상이 생성되었습니다.", is_timeout=True)
                            yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
                        else:
                            error_html = create_error_html(f"처리 시간 초과: {e}", is_timeout=True)
                            yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
                        break
        except Exception as e:
            print(f"프로세스 시작 오류: {e}")
            traceback.print_exc()
            error_msg = str(e)
            
            error_html = create_error_html(error_msg)
            yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
    
    process = process_with_gpu
else:
    def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
        global stream
        assert input_image is not None, 'No input image!'

        yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)

        try:
            stream = AsyncStream()
            async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)

            output_filename = None
            prev_output_filename = None
            error_message = None

            while True:
                try:
                    flag, data = stream.output_queue.next()

                    if flag == 'file':
                        output_filename = data
                        prev_output_filename = output_filename
                        yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)

                    if flag == 'progress':
                        preview, desc, html = data
                        yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
                    
                    if flag == 'error':
                        error_message = data
                        print(f"오류 메시지 수신: {error_message}")

                    if flag == 'end':
                        if output_filename is None and prev_output_filename is not None:
                            output_filename = prev_output_filename
                        
                        if error_message:
                            error_html = create_error_html(error_message)
                            yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
                        else:
                            yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
                        break
                except Exception as e:
                    print(f"출력 처리 중 오류: {e}")
                    current_time = time.time()
                    if current_time - last_update_time > 60:
                        print(f"{current_time - last_update_time:.1f}초 동안 진행이 없어 타임아웃으로 간주합니다.")
                        if prev_output_filename:
                            error_html = create_error_html("처리 시간이 초과되었지만 일부 동영상이 생성되었습니다.", is_timeout=True)
                            yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
                        else:
                            error_html = create_error_html(f"처리 시간 초과: {e}", is_timeout=True)
                            yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
                        break
        except Exception as e:
            print(f"프로세스 시작 오류: {e}")
            traceback.print_exc()
            error_msg = str(e)
            
            error_html = create_error_html(error_msg)
            yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)

def end_process():
    print("사용자가 중지 버튼을 눌렀습니다. 종료 신호를 보냅니다...")
    if 'stream' in globals() and stream is not None:
        try:
            current_top = stream.input_queue.top()
            print(f"현재 입력 큐 top: {current_top}")
        except Exception as e:
            print(f"입력 큐 확인 오류: {e}")
        try:
            stream.input_queue.push('end')
            print("end 신호 전송 완료")
            try:
                current_top_after = stream.input_queue.top()
                print(f"신호 전송 후 입력 큐 top: {current_top_after}")
            except Exception as e:
                print(f"신호 전송 후 큐 상태 확인 오류: {e}")
        except Exception as e:
            print(f"end 신호 전송 오류: {e}")
    else:
        print("stream이 초기화되지 않아 종료 신호를 보낼 수 없습니다.")
    return None

quick_prompts = [
    'The girl dances gracefully, with clear movements, full of charm.',
    'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]

def make_custom_css():
    progress_bar_css = make_progress_bar_css()
    
    responsive_css = """
    /* progress_bar_css로부터 불러온 기본 설정 + 추가 */
    
    #app-container {
        max-width: 100%;
        margin: 0 auto;
    }
    
    #language-toggle {
        position: fixed;
        top: 10px;
        right: 10px;
        z-index: 1000;
        background-color: rgba(0, 0, 0, 0.7);
        color: white;
        border: none;
        border-radius: 4px;
        padding: 5px 10px;
        cursor: pointer;
        font-size: 14px;
    }
    
    h1 {
        font-size: 2rem;
        text-align: center;
        margin-bottom: 1rem;
    }
    
    .start-btn, .stop-btn {
        min-height: 45px;
        font-size: 1rem;
    }
    
    @media (max-width: 768px) {
        h1 {
            font-size: 1.5rem;
            margin-bottom: 0.5rem;
        }
        
        .mobile-full-width {
            flex-direction: column !important;
        }
        
        .mobile-full-width > .gr-block {
            min-width: 100% !important;
            flex-grow: 1;
        }
        
        .video-container {
            height: auto !important;
        }
        
        .button-container button {
            min-height: 50px;
            font-size: 1rem;
            touch-action: manipulation;
        }
        
        .slider-container input[type="range"] {
            height: 30px;
        }
    }
    
    @media (min-width: 769px) and (max-width: 1024px) {
        .tablet-adjust {
            width: 48% !important;
        }
    }
    
    @media (prefers-color-scheme: dark) {
        .dark-mode-text {
            color: #f0f0f0;
        }
        .dark-mode-bg {
            background-color: #2a2a2a;
        }
    }
    
    button, input, select, textarea {
        font-size: 16px;
    }
    
    button, .interactive-element {
        min-height: 44px;
        min-width: 44px;
    }
    
    .high-contrast {
        color: #fff;
        background-color: #000;
    }
    
    .progress-container {
        margin-top: 10px;
        margin-bottom: 10px;
    }
    
    #error-message {
        color: #ff4444;
        font-weight: bold;
        padding: 10px;
        border-radius: 4px;
        margin-top: 10px;
    }
    
    .error-message {
        background-color: rgba(255, 0, 0, 0.1);
        padding: 10px;
        border-radius: 4px;
        margin-top: 10px;
        border: 1px solid #ffcccc;
    }
    
    .error-msg-en, .error-msg-ko {
        font-weight: bold;
    }
    
    .error-icon {
        color: #ff4444;
        font-size: 18px;
        margin-right: 8px;
    }
    
    #error-message:empty {
        background-color: transparent;
        border: none;
        padding: 0;
        margin: 0;
    }
    
    .error {
        display: none !important;
    }
    """
    
    return progress_bar_css + responsive_css

css = make_custom_css()
block = gr.Blocks(css=css).queue()
with block:
    gr.HTML("""
        <div id="app-container">
            <button id="language-toggle" onclick="toggleLanguage()">한국어 / English</button>
        </div>
        <script>
            window.currentLang = "en";
            function toggleLanguage() {
                window.currentLang = (window.currentLang === "en") ? "ko" : "en";
                
                const elements = document.querySelectorAll('[data-i18n]');
                elements.forEach(el => {
                    const key = el.getAttribute('data-i18n');
                    const translations = {
                        "en": {
                            "title": "FramePack - Image to Video Generation",
                            "upload_image": "Upload Image",
                            "prompt": "Prompt",
                            "quick_prompts": "Quick Prompts",
                            "start_generation": "Generate",
                            "stop_generation": "Stop",
                            "use_teacache": "Use TeaCache",
                            "teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
                            "negative_prompt": "Negative Prompt",
                            "seed": "Seed",
                            "video_length": "Video Length (max 5 seconds)",
                            "latent_window": "Latent Window Size",
                            "steps": "Inference Steps",
                            "steps_info": "Changing this value is not recommended.",
                            "cfg_scale": "CFG Scale",
                            "distilled_cfg": "Distilled CFG Scale",
                            "distilled_cfg_info": "Changing this value is not recommended.",
                            "cfg_rescale": "CFG Rescale",
                            "gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
                            "gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
                            "next_latents": "Next Latents",
                            "generated_video": "Generated Video",
                            "sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
                            "error_message": "Error"
                        },
                        "ko": {
                            "title": "FramePack - 이미지에서 동영상 생성",
                            "upload_image": "이미지 업로드",
                            "prompt": "프롬프트",
                            "quick_prompts": "빠른 프롬프트 목록",
                            "start_generation": "생성 시작",
                            "stop_generation": "생성 중지",
                            "use_teacache": "TeaCache 사용",
                            "teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.",
                            "negative_prompt": "부정 프롬프트",
                            "seed": "랜덤 시드",
                            "video_length": "동영상 길이 (최대 5초)",
                            "latent_window": "잠재 윈도우 크기",
                            "steps": "추론 스텝 수",
                            "steps_info": "이 값을 변경하는 것은 권장되지 않습니다.",
                            "cfg_scale": "CFG 스케일",
                            "distilled_cfg": "증류된 CFG 스케일",
                            "distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.",
                            "cfg_rescale": "CFG 재스케일",
                            "gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)",
                            "gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.",
                            "next_latents": "다음 잠재 변수",
                            "generated_video": "생성된 동영상",
                            "sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 나타나지 않으면 기다려 주십시오.",
                            "error_message": "오류 메시지"
                        }
                    };
                    
                    if (translations[window.currentLang] && translations[window.currentLang][key]) {
                        if (el.tagName === 'BUTTON') {
                            el.textContent = translations[window.currentLang][key];
                        } else if (el.tagName === 'LABEL') {
                            el.textContent = translations[window.currentLang][key];
                        } else {
                            el.innerHTML = translations[window.currentLang][key];
                        }
                    }
                });
                
                // bilingual-label 처리
                document.querySelectorAll('.bilingual-label').forEach(el => {
                    const enText = el.getAttribute('data-en');
                    const koText = el.getAttribute('data-ko');
                    el.textContent = (window.currentLang === 'en') ? enText : koText;
                });
                
                // data-lang 처리
                document.querySelectorAll('[data-lang]').forEach(el => {
                    el.style.display = (el.getAttribute('data-lang') === window.currentLang) ? 'block' : 'none';
                });
            }
            
            document.addEventListener('DOMContentLoaded', function() {
                setTimeout(() => {
                    // 매핑
                    const labelMap = {
                        "Upload Image": "upload_image",
                        "이미지 업로드": "upload_image",
                        "Prompt": "prompt",
                        "프롬프트": "prompt",
                        "Quick Prompts": "quick_prompts",
                        "빠른 프롬프트 목록": "quick_prompts",
                        "Generate": "start_generation",
                        "생성 시작": "start_generation",
                        "Stop": "stop_generation",
                        "생성 중지": "stop_generation"
                    };
                    
                    document.querySelectorAll('label, span, button').forEach(el => {
                        const text = el.textContent.trim();
                        if (labelMap[text]) {
                            el.setAttribute('data-i18n', labelMap[text]);
                        }
                    });
                    
                    const titleEl = document.querySelector('h1');
                    if (titleEl) titleEl.setAttribute('data-i18n', 'title');
                    
                    toggleLanguage();
                }, 1000);
            });
        </script>
    """)

    gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation</h1>")
    
    with gr.Row(elem_classes="mobile-full-width"):
        with gr.Column(scale=1, elem_classes="mobile-full-width"):
            input_image = gr.Image(
                sources='upload', 
                type="numpy", 
                label="Upload Image", 
                elem_id="input-image",
                height=320
            )
            
            prompt = gr.Textbox(
                label="Prompt", 
                value='',
                elem_id="prompt-input"
            )
            
            example_quick_prompts = gr.Dataset(
                samples=quick_prompts, 
                label='Quick Prompts', 
                samples_per_page=1000, 
                components=[prompt]
            )
            example_quick_prompts.click(
                lambda x: x[0], 
                inputs=[example_quick_prompts], 
                outputs=prompt, 
                show_progress=False, 
                queue=False
            )

            with gr.Row(elem_classes="button-container"):
                start_button = gr.Button(
                    value="Generate", 
                    elem_classes="start-btn", 
                    elem_id="start-button",
                    variant="primary"
                )
                
                end_button = gr.Button(
                    value="Stop", 
                    elem_classes="stop-btn", 
                    elem_id="stop-button",
                    interactive=False
                )

            with gr.Group():
                use_teacache = gr.Checkbox(
                    label='Use TeaCache', 
                    value=True, 
                    info='Faster speed, but may result in slightly worse finger and hand generation.'
                )

                n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
                
                seed = gr.Number(
                    label="Seed", 
                    value=31337, 
                    precision=0
                )
                
                with gr.Group(elem_classes="slider-container"):
                    total_second_length = gr.Slider(
                        label="Video Length (max 5 seconds)", 
                        minimum=1, 
                        maximum=5, 
                        value=5, 
                        step=0.1
                    )
                    
                    latent_window_size = gr.Slider(
                        label="Latent Window Size", 
                        minimum=1, 
                        maximum=33, 
                        value=9, 
                        step=1, 
                        visible=False
                    )
                    
                    steps = gr.Slider(
                        label="Inference Steps", 
                        minimum=1, 
                        maximum=100, 
                        value=25, 
                        step=1, 
                        info='Changing this value is not recommended.'
                    )

                    cfg = gr.Slider(
                        label="CFG Scale", 
                        minimum=1.0, 
                        maximum=32.0, 
                        value=1.0, 
                        step=0.01, 
                        visible=False
                    )
                    
                    gs = gr.Slider(
                        label="Distilled CFG Scale", 
                        minimum=1.0, 
                        maximum=32.0, 
                        value=10.0, 
                        step=0.01, 
                        info='Changing this value is not recommended.'
                    )
                    
                    rs = gr.Slider(
                        label="CFG Rescale", 
                        minimum=0.0, 
                        maximum=1.0, 
                        value=0.0, 
                        step=0.01, 
                        visible=False
                    )

                    gpu_memory_preservation = gr.Slider(
                        label="GPU Memory (GB)", 
                        minimum=6, 
                        maximum=128, 
                        value=6, 
                        step=0.1, 
                        info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed."
                    )

        with gr.Column(scale=1, elem_classes="mobile-full-width"):
            preview_image = gr.Image(
                label="Preview", 
                height=200, 
                visible=False,
                elem_classes="preview-container"
            )
            
            result_video = gr.Video(
                label="Generated Video", 
                autoplay=True, 
                show_share_button=True,
                height=512, 
                loop=True,
                elem_classes="video-container",
                elem_id="result-video"
            )
            
            gr.HTML("<div data-i18n='sampling_note'>Note: Due to reversed sampling, ending actions will be generated before starting actions.</div>")
            
            with gr.Group(elem_classes="progress-container"):
                progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
                progress_bar = gr.HTML('', elem_classes='no-generating-animation')
            
            error_message = gr.HTML('', elem_id='error-message', visible=True)
    
    ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]

    start_button.click(fn=process, inputs=ips, outputs=[
        result_video, preview_image, progress_desc, progress_bar, start_button, end_button
    ])
    end_button.click(fn=end_process)

block.launch()

def create_error_html(error_msg, is_timeout=False):
    en_msg = ""
    ko_msg = ""
    
    if is_timeout:
        if "부분" in error_msg or "partial" in error_msg:
            en_msg = "Processing timed out, but partial video has been generated."
            ko_msg = "처리 시간이 초과되었지만 일부 동영상이 생성되었습니다."
        else:
            en_msg = f"Processing timed out: {error_msg}"
            ko_msg = f"처리 시간 초과: {error_msg}"
    elif "모델 로드" in error_msg:
        en_msg = "Failed to load models. Possibly heavy traffic or GPU problem."
        ko_msg = "모델 로드에 실패했습니다. 과도한 트래픽 또는 GPU 문제일 수 있습니다."
    elif "GPU" in error_msg or "CUDA" in error_msg or "memory" in error_msg or "메모리" in error_msg:
        en_msg = "GPU memory insufficient or error. Increase GPU memory preservation or reduce video length."
        ko_msg = "GPU 메모리가 부족하거나 오류가 발생했습니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요."
    elif "샘플링 중 오류" in error_msg or "sampling process" in error_msg:
        if "부분" in error_msg or "partial" in error_msg:
            en_msg = "Error during sampling, but partial video has been generated."
            ko_msg = "샘플링 중 오류가 발생했지만 일부 동영상이 생성되었습니다."
        else:
            en_msg = "Error during sampling. Unable to generate video."
            ko_msg = "샘플링 중 오류가 발생했습니다. 비디오 생성에 실패했습니다."
    elif "네트워크" in error_msg or "Network" in error_msg or "ConnectionError" in error_msg or "ReadTimeoutError" in error_msg:
        en_msg = "Network is unstable, model download timed out. Please try again later."
        ko_msg = "네트워크가 불안정하여 모델 다운로드가 시간 초과되었습니다. 잠시 후 다시 시도해 주세요."
    elif "VAE" in error_msg or "디코딩" in error_msg or "decode" in error_msg:
        en_msg = "Error during video decoding or saving process. Try a different seed."
        ko_msg = "비디오 디코딩/저장 중 오류가 발생했습니다. 다른 시드를 시도해보세요."
    else:
        en_msg = f"Processing error: {error_msg}"
        ko_msg = f"처리 중 오류가 발생했습니다: {error_msg}"
    
    return f"""
    <div class="error-message" id="custom-error-container">
        <div class="error-msg-en" data-lang="en">
            <span class="error-icon">⚠️</span> {en_msg}
        </div>
        <div class="error-msg-ko" data-lang="ko">
            <span class="error-icon">⚠️</span> {ko_msg}
        </div>
    </div>
    <script>
        (function() {{
            const errorContainer = document.getElementById('custom-error-container');
            if (errorContainer) {{
                const currentLang = window.currentLang || 'en';
                const errMsgs = errorContainer.querySelectorAll('[data-lang]');
                errMsgs.forEach(msg => {{
                    msg.style.display = (msg.getAttribute('data-lang') === currentLang) ? 'block' : 'none';
                }});
                const defaultErrorElements = document.querySelectorAll('.error');
                defaultErrorElements.forEach(el => {{
                    el.style.display = 'none';
                }});
            }}
        }})();
    </script>
    """