Spaces:
Running
on
Zero
Running
on
Zero
Update app-backup.py
Browse files- app-backup.py +69 -101
app-backup.py
CHANGED
|
@@ -56,7 +56,7 @@ pipe = FluxPipeline.from_pretrained(
|
|
| 56 |
use_auth_token=HF_TOKEN
|
| 57 |
)
|
| 58 |
|
| 59 |
-
# Hyper-SD LoRA λ‘λ
|
| 60 |
pipe.load_lora_weights(
|
| 61 |
hf_hub_download(
|
| 62 |
"ByteDance/Hyper-SD",
|
|
@@ -89,10 +89,6 @@ def save_image(image):
|
|
| 89 |
image = Image.fromarray(image)
|
| 90 |
image.save(filepath, "PNG", quality=100)
|
| 91 |
|
| 92 |
-
if not os.path.exists(filepath):
|
| 93 |
-
print(f"Warning: Failed to verify saved image at {filepath}")
|
| 94 |
-
return None
|
| 95 |
-
|
| 96 |
return filepath
|
| 97 |
except Exception as e:
|
| 98 |
print(f"Failed to save image: {str(e)}")
|
|
@@ -102,7 +98,6 @@ def save_image(image):
|
|
| 102 |
print(f"Error in save_image: {str(e)}")
|
| 103 |
return None
|
| 104 |
|
| 105 |
-
|
| 106 |
# μμ ν둬ννΈ μ μ
|
| 107 |
examples = [
|
| 108 |
["A 3D Star Wars Darth Vader helmet, highly detailed metallic finish"],
|
|
@@ -117,7 +112,61 @@ examples = [
|
|
| 117 |
["A 3D floating magical crystal orb with internal energy swirls"]
|
| 118 |
]
|
| 119 |
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
with gr.Blocks(
|
| 122 |
theme=gr.themes.Soft(),
|
| 123 |
css="""
|
|
@@ -160,57 +209,6 @@ with gr.Blocks(
|
|
| 160 |
lines=3
|
| 161 |
)
|
| 162 |
|
| 163 |
-
# ... (κΈ°μ‘΄ Advanced Settings μ½λ)
|
| 164 |
-
|
| 165 |
-
with gr.Column(scale=4, elem_classes=["fixed-width"]):
|
| 166 |
-
# κΈ°λ³Έ μ΄λ―Έμ§ μ€μ
|
| 167 |
-
output = gr.Image(
|
| 168 |
-
label="Generated Image",
|
| 169 |
-
elem_id="output-image",
|
| 170 |
-
elem_classes=["output-image", "fixed-width"],
|
| 171 |
-
value="3d.webp" # κΈ°λ³Έ μ΄λ―Έμ§ μ€μ
|
| 172 |
-
)
|
| 173 |
-
|
| 174 |
-
# Examples μΉμ
μΆκ°
|
| 175 |
-
gr.Examples(
|
| 176 |
-
examples=examples,
|
| 177 |
-
inputs=prompt,
|
| 178 |
-
outputs=output,
|
| 179 |
-
fn=process_and_save_image,
|
| 180 |
-
cache_examples=True, # μμ κ²°κ³Ό μΊμ± νμ±ν
|
| 181 |
-
examples_per_page=5
|
| 182 |
-
)
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
if __name__ == "__main__":
|
| 187 |
-
demo.launch(
|
| 188 |
-
allowed_paths=[PERSISTENT_DIR],
|
| 189 |
-
share=True
|
| 190 |
-
)
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
# Create Gradio interface
|
| 205 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 206 |
-
with gr.Row():
|
| 207 |
-
with gr.Column(scale=3):
|
| 208 |
-
prompt = gr.Textbox(
|
| 209 |
-
label="Image Description",
|
| 210 |
-
placeholder="Describe the image you want to create...",
|
| 211 |
-
lines=3
|
| 212 |
-
)
|
| 213 |
-
|
| 214 |
with gr.Accordion("Advanced Settings", open=False):
|
| 215 |
with gr.Row():
|
| 216 |
height = gr.Slider(
|
|
@@ -244,9 +242,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 244 |
value=3.5
|
| 245 |
)
|
| 246 |
|
| 247 |
-
def get_random_seed():
|
| 248 |
-
return torch.randint(0, 1000000, (1,)).item()
|
| 249 |
-
|
| 250 |
seed = gr.Number(
|
| 251 |
label="Seed (random by default, set for reproducibility)",
|
| 252 |
value=get_random_seed(),
|
|
@@ -264,51 +259,24 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 264 |
output = gr.Image(
|
| 265 |
label="Generated Image",
|
| 266 |
elem_id="output-image",
|
| 267 |
-
elem_classes=["output-image", "fixed-width"]
|
|
|
|
| 268 |
)
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
# νκΈμ μμ΄λ‘ λ²μ
|
| 281 |
-
translated = translator(prompt)[0]['translation_text']
|
| 282 |
-
prompt = translated
|
| 283 |
-
|
| 284 |
-
# ν둬ννΈ νμ κ°μ
|
| 285 |
-
formatted_prompt = f"wbgmsst, 3D, {prompt} ,white background"
|
| 286 |
-
|
| 287 |
-
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
| 288 |
-
try:
|
| 289 |
-
generated_image = pipe(
|
| 290 |
-
prompt=[formatted_prompt],
|
| 291 |
-
generator=torch.Generator().manual_seed(int(seed)),
|
| 292 |
-
num_inference_steps=int(steps),
|
| 293 |
-
guidance_scale=float(scales),
|
| 294 |
-
height=int(height),
|
| 295 |
-
width=int(width),
|
| 296 |
-
max_sequence_length=256
|
| 297 |
-
).images[0]
|
| 298 |
-
|
| 299 |
-
saved_path = save_image(generated_image)
|
| 300 |
-
if saved_path is None:
|
| 301 |
-
print("Warning: Failed to save generated image")
|
| 302 |
-
|
| 303 |
-
return generated_image
|
| 304 |
-
except Exception as e:
|
| 305 |
-
print(f"Error in image generation: {str(e)}")
|
| 306 |
-
return None
|
| 307 |
-
|
| 308 |
def update_seed():
|
| 309 |
return get_random_seed()
|
| 310 |
|
| 311 |
-
#
|
| 312 |
generate_btn.click(
|
| 313 |
process_and_save_image,
|
| 314 |
inputs=[height, width, steps, scales, prompt, seed],
|
|
|
|
| 56 |
use_auth_token=HF_TOKEN
|
| 57 |
)
|
| 58 |
|
| 59 |
+
# Hyper-SD LoRA λ‘λ
|
| 60 |
pipe.load_lora_weights(
|
| 61 |
hf_hub_download(
|
| 62 |
"ByteDance/Hyper-SD",
|
|
|
|
| 89 |
image = Image.fromarray(image)
|
| 90 |
image.save(filepath, "PNG", quality=100)
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
return filepath
|
| 93 |
except Exception as e:
|
| 94 |
print(f"Failed to save image: {str(e)}")
|
|
|
|
| 98 |
print(f"Error in save_image: {str(e)}")
|
| 99 |
return None
|
| 100 |
|
|
|
|
| 101 |
# μμ ν둬ννΈ μ μ
|
| 102 |
examples = [
|
| 103 |
["A 3D Star Wars Darth Vader helmet, highly detailed metallic finish"],
|
|
|
|
| 112 |
["A 3D floating magical crystal orb with internal energy swirls"]
|
| 113 |
]
|
| 114 |
|
| 115 |
+
@spaces.GPU
|
| 116 |
+
def process_and_save_image(height=1024, width=1024, steps=8, scales=3.5, prompt="", seed=None):
|
| 117 |
+
global pipe
|
| 118 |
+
|
| 119 |
+
if seed is None:
|
| 120 |
+
seed = torch.randint(0, 1000000, (1,)).item()
|
| 121 |
+
|
| 122 |
+
# νκΈ κ°μ§ λ° λ²μ
|
| 123 |
+
def contains_korean(text):
|
| 124 |
+
return any(ord('κ°') <= ord(c) <= ord('ν£') for c in text)
|
| 125 |
+
|
| 126 |
+
# ν둬ννΈ μ μ²λ¦¬
|
| 127 |
+
if contains_korean(prompt):
|
| 128 |
+
translated = translator(prompt)[0]['translation_text']
|
| 129 |
+
prompt = translated
|
| 130 |
+
|
| 131 |
+
formatted_prompt = f"wbgmsst, 3D, {prompt} ,white background"
|
| 132 |
+
|
| 133 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
| 134 |
+
try:
|
| 135 |
+
generated_image = pipe(
|
| 136 |
+
prompt=[formatted_prompt],
|
| 137 |
+
generator=torch.Generator().manual_seed(int(seed)),
|
| 138 |
+
num_inference_steps=int(steps),
|
| 139 |
+
guidance_scale=float(scales),
|
| 140 |
+
height=int(height),
|
| 141 |
+
width=int(width),
|
| 142 |
+
max_sequence_length=256
|
| 143 |
+
).images[0]
|
| 144 |
+
|
| 145 |
+
saved_path = save_image(generated_image)
|
| 146 |
+
if saved_path is None:
|
| 147 |
+
print("Warning: Failed to save generated image")
|
| 148 |
+
|
| 149 |
+
return generated_image
|
| 150 |
+
except Exception as e:
|
| 151 |
+
print(f"Error in image generation: {str(e)}")
|
| 152 |
+
return None
|
| 153 |
+
|
| 154 |
+
def get_random_seed():
|
| 155 |
+
return torch.randint(0, 1000000, (1,)).item()
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def process_example(prompt):
|
| 159 |
+
return process_and_save_image(
|
| 160 |
+
height=1024,
|
| 161 |
+
width=1024,
|
| 162 |
+
steps=8,
|
| 163 |
+
scales=3.5,
|
| 164 |
+
prompt=prompt,
|
| 165 |
+
seed=get_random_seed()
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
# Gradio μΈν°νμ΄μ€
|
| 170 |
with gr.Blocks(
|
| 171 |
theme=gr.themes.Soft(),
|
| 172 |
css="""
|
|
|
|
| 209 |
lines=3
|
| 210 |
)
|
| 211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
with gr.Accordion("Advanced Settings", open=False):
|
| 213 |
with gr.Row():
|
| 214 |
height = gr.Slider(
|
|
|
|
| 242 |
value=3.5
|
| 243 |
)
|
| 244 |
|
|
|
|
|
|
|
|
|
|
| 245 |
seed = gr.Number(
|
| 246 |
label="Seed (random by default, set for reproducibility)",
|
| 247 |
value=get_random_seed(),
|
|
|
|
| 259 |
output = gr.Image(
|
| 260 |
label="Generated Image",
|
| 261 |
elem_id="output-image",
|
| 262 |
+
elem_classes=["output-image", "fixed-width"],
|
| 263 |
+
value="3d.webp"
|
| 264 |
)
|
| 265 |
|
| 266 |
+
# Examples μΉμ
|
| 267 |
+
gr.Examples(
|
| 268 |
+
examples=examples,
|
| 269 |
+
inputs=prompt,
|
| 270 |
+
outputs=output,
|
| 271 |
+
fn=process_example, # μμ λ ν¨μ μ¬μ©
|
| 272 |
+
cache_examples=False,
|
| 273 |
+
examples_per_page=5
|
| 274 |
+
)
|
| 275 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
def update_seed():
|
| 277 |
return get_random_seed()
|
| 278 |
|
| 279 |
+
# μ΄λ²€νΈ νΈλ€λ¬
|
| 280 |
generate_btn.click(
|
| 281 |
process_and_save_image,
|
| 282 |
inputs=[height, width, steps, scales, prompt, seed],
|