Delete hooks/useHandDetection.js
Browse files- hooks/useHandDetection.js +0 -253
hooks/useHandDetection.js
DELETED
@@ -1,253 +0,0 @@
|
|
1 |
-
import { useState, useEffect, useRef } from 'react';
|
2 |
-
import * as tf from '@tensorflow/tfjs';
|
3 |
-
import * as cocossd from '@tensorflow-models/coco-ssd';
|
4 |
-
|
5 |
-
const useCardDetection = (videoRef, canvasRef, isMobile) => {
|
6 |
-
const [model, setModel] = useState(null);
|
7 |
-
const [cardDetected, setCardDetected] = useState(false);
|
8 |
-
const [detectedCards, setDetectedCards] = useState([]);
|
9 |
-
const [cardCount, setCardCount] = useState(0);
|
10 |
-
const [isFirstLoad, setIsFirstLoad] = useState(true);
|
11 |
-
|
12 |
-
const requestRef = useRef(null);
|
13 |
-
const lastDetectionTimeRef = useRef(0);
|
14 |
-
const isComponentMounted = useRef(true);
|
15 |
-
|
16 |
-
// Initialize the object detection model
|
17 |
-
useEffect(() => {
|
18 |
-
isComponentMounted.current = true;
|
19 |
-
|
20 |
-
const loadModel = async () => {
|
21 |
-
try {
|
22 |
-
// Load COCO-SSD model as a base
|
23 |
-
// In production, you'd want to use a custom card detection model
|
24 |
-
const loadedModel = await cocossd.load({
|
25 |
-
base: 'lite_mobilenet_v2',
|
26 |
-
modelUrl: undefined // Use default model
|
27 |
-
});
|
28 |
-
|
29 |
-
if (!isComponentMounted.current) return;
|
30 |
-
|
31 |
-
setModel(loadedModel);
|
32 |
-
console.log("Card detection model loaded successfully");
|
33 |
-
|
34 |
-
// Set first load to false after initialization
|
35 |
-
setTimeout(() => {
|
36 |
-
if (isComponentMounted.current) {
|
37 |
-
setIsFirstLoad(false);
|
38 |
-
}
|
39 |
-
}, 3000);
|
40 |
-
} catch (error) {
|
41 |
-
console.error("Error loading detection model:", error);
|
42 |
-
}
|
43 |
-
};
|
44 |
-
|
45 |
-
loadModel();
|
46 |
-
|
47 |
-
return () => {
|
48 |
-
isComponentMounted.current = false;
|
49 |
-
if (requestRef.current) {
|
50 |
-
cancelAnimationFrame(requestRef.current);
|
51 |
-
requestRef.current = null;
|
52 |
-
}
|
53 |
-
};
|
54 |
-
}, []);
|
55 |
-
|
56 |
-
// Process video frames and detect cards
|
57 |
-
useEffect(() => {
|
58 |
-
if (!model || !videoRef.current || !canvasRef.current) return;
|
59 |
-
|
60 |
-
const video = videoRef.current;
|
61 |
-
const canvas = canvasRef.current;
|
62 |
-
const ctx = canvas.getContext('2d');
|
63 |
-
|
64 |
-
const detectCards = async (now) => {
|
65 |
-
if (!isComponentMounted.current) return;
|
66 |
-
|
67 |
-
if (video.readyState < 2) {
|
68 |
-
requestRef.current = requestAnimationFrame(detectCards);
|
69 |
-
return;
|
70 |
-
}
|
71 |
-
|
72 |
-
// Only run detection every 200ms for performance
|
73 |
-
if (now - lastDetectionTimeRef.current > 200) {
|
74 |
-
lastDetectionTimeRef.current = now;
|
75 |
-
|
76 |
-
try {
|
77 |
-
// Detect objects in the video frame
|
78 |
-
const predictions = await model.detect(video);
|
79 |
-
|
80 |
-
// Clear the canvas
|
81 |
-
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
82 |
-
|
83 |
-
// Draw the video frame
|
84 |
-
ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
|
85 |
-
|
86 |
-
// Filter for card-like objects
|
87 |
-
// In a real implementation, you'd have a model trained specifically for cards
|
88 |
-
const cardPredictions = predictions.filter(prediction => {
|
89 |
-
// This is a placeholder - in reality, you'd detect actual playing cards
|
90 |
-
// For demo purposes, we'll look for rectangular objects
|
91 |
-
const aspectRatio = prediction.bbox[2] / prediction.bbox[3];
|
92 |
-
return aspectRatio > 0.5 && aspectRatio < 0.8 &&
|
93 |
-
prediction.score > 0.5;
|
94 |
-
});
|
95 |
-
|
96 |
-
// Draw bounding boxes for detected cards
|
97 |
-
ctx.strokeStyle = '#00FF00';
|
98 |
-
ctx.lineWidth = 3;
|
99 |
-
ctx.font = '18px Arial';
|
100 |
-
ctx.fillStyle = '#00FF00';
|
101 |
-
|
102 |
-
const cards = [];
|
103 |
-
|
104 |
-
cardPredictions.forEach((prediction, index) => {
|
105 |
-
const [x, y, width, height] = prediction.bbox;
|
106 |
-
|
107 |
-
// Draw bounding box
|
108 |
-
ctx.strokeRect(x, y, width, height);
|
109 |
-
|
110 |
-
// Draw label
|
111 |
-
const label = `Card ${index + 1} (${Math.round(prediction.score * 100)}%)`;
|
112 |
-
ctx.fillText(label, x, y > 20 ? y - 5 : y + height + 20);
|
113 |
-
|
114 |
-
// Store card information
|
115 |
-
cards.push({
|
116 |
-
id: index,
|
117 |
-
bbox: prediction.bbox,
|
118 |
-
confidence: prediction.score,
|
119 |
-
center: {
|
120 |
-
x: x + width / 2,
|
121 |
-
y: y + height / 2
|
122 |
-
}
|
123 |
-
});
|
124 |
-
});
|
125 |
-
|
126 |
-
// Update state
|
127 |
-
setCardDetected(cards.length > 0);
|
128 |
-
setDetectedCards(cards);
|
129 |
-
setCardCount(cards.length);
|
130 |
-
|
131 |
-
} catch (error) {
|
132 |
-
console.error("Detection error:", error);
|
133 |
-
}
|
134 |
-
}
|
135 |
-
|
136 |
-
requestRef.current = requestAnimationFrame(detectCards);
|
137 |
-
};
|
138 |
-
|
139 |
-
requestRef.current = requestAnimationFrame(detectCards);
|
140 |
-
|
141 |
-
return () => {
|
142 |
-
if (requestRef.current) {
|
143 |
-
cancelAnimationFrame(requestRef.current);
|
144 |
-
requestRef.current = null;
|
145 |
-
}
|
146 |
-
};
|
147 |
-
}, [model, videoRef, canvasRef]);
|
148 |
-
|
149 |
-
// Custom card classification function (placeholder)
|
150 |
-
const classifyCard = async (imageData) => {
|
151 |
-
// In a real implementation, this would:
|
152 |
-
// 1. Extract the card region from the image
|
153 |
-
// 2. Run it through a card classification model
|
154 |
-
// 3. Return the suit and rank
|
155 |
-
return {
|
156 |
-
suit: 'unknown',
|
157 |
-
rank: 'unknown',
|
158 |
-
confidence: 0
|
159 |
-
};
|
160 |
-
};
|
161 |
-
|
162 |
-
// Function to analyze card patterns
|
163 |
-
const analyzeCardPattern = (cards) => {
|
164 |
-
// Analyze spatial arrangement of cards
|
165 |
-
if (cards.length === 0) return null;
|
166 |
-
|
167 |
-
// Sort cards by x position (left to right)
|
168 |
-
const sortedCards = [...cards].sort((a, b) => a.center.x - b.center.x);
|
169 |
-
|
170 |
-
// Calculate spread and alignment
|
171 |
-
const spread = cards.length > 1 ?
|
172 |
-
sortedCards[sortedCards.length - 1].center.x - sortedCards[0].center.x : 0;
|
173 |
-
|
174 |
-
const avgY = cards.reduce((sum, card) => sum + card.center.y, 0) / cards.length;
|
175 |
-
const alignment = cards.every(card => Math.abs(card.center.y - avgY) < 50) ? 'horizontal' : 'scattered';
|
176 |
-
|
177 |
-
return {
|
178 |
-
count: cards.length,
|
179 |
-
spread,
|
180 |
-
alignment,
|
181 |
-
sortedCards
|
182 |
-
};
|
183 |
-
};
|
184 |
-
|
185 |
-
return {
|
186 |
-
cardDetected,
|
187 |
-
detectedCards,
|
188 |
-
cardCount,
|
189 |
-
isFirstLoad,
|
190 |
-
isComponentMounted,
|
191 |
-
classifyCard,
|
192 |
-
analyzeCardPattern,
|
193 |
-
cardPattern: analyzeCardPattern(detectedCards)
|
194 |
-
};
|
195 |
-
};
|
196 |
-
|
197 |
-
export default useCardDetection;
|
198 |
-
|
199 |
-
// Utility functions for card detection
|
200 |
-
export const drawCardBoundingBox = (ctx, card, color = '#00FF00') => {
|
201 |
-
const [x, y, width, height] = card.bbox;
|
202 |
-
|
203 |
-
ctx.strokeStyle = color;
|
204 |
-
ctx.lineWidth = 2;
|
205 |
-
ctx.strokeRect(x, y, width, height);
|
206 |
-
|
207 |
-
// Draw corner markers
|
208 |
-
const cornerLength = 20;
|
209 |
-
ctx.lineWidth = 3;
|
210 |
-
|
211 |
-
// Top-left corner
|
212 |
-
ctx.beginPath();
|
213 |
-
ctx.moveTo(x, y + cornerLength);
|
214 |
-
ctx.lineTo(x, y);
|
215 |
-
ctx.lineTo(x + cornerLength, y);
|
216 |
-
ctx.stroke();
|
217 |
-
|
218 |
-
// Top-right corner
|
219 |
-
ctx.beginPath();
|
220 |
-
ctx.moveTo(x + width - cornerLength, y);
|
221 |
-
ctx.lineTo(x + width, y);
|
222 |
-
ctx.lineTo(x + width, y + cornerLength);
|
223 |
-
ctx.stroke();
|
224 |
-
|
225 |
-
// Bottom-left corner
|
226 |
-
ctx.beginPath();
|
227 |
-
ctx.moveTo(x, y + height - cornerLength);
|
228 |
-
ctx.lineTo(x, y + height);
|
229 |
-
ctx.lineTo(x + cornerLength, y + height);
|
230 |
-
ctx.stroke();
|
231 |
-
|
232 |
-
// Bottom-right corner
|
233 |
-
ctx.beginPath();
|
234 |
-
ctx.moveTo(x + width - cornerLength, y + height);
|
235 |
-
ctx.lineTo(x + width, y + height);
|
236 |
-
ctx.lineTo(x + width, y + height - cornerLength);
|
237 |
-
ctx.stroke();
|
238 |
-
};
|
239 |
-
|
240 |
-
// Card suit and rank detection utilities
|
241 |
-
export const CARD_SUITS = ['hearts', 'diamonds', 'clubs', 'spades'];
|
242 |
-
export const CARD_RANKS = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K'];
|
243 |
-
|
244 |
-
// Placeholder for custom card model predictions
|
245 |
-
export const predictCardValue = async (model, imageData) => {
|
246 |
-
// This would use a trained model to predict card suit and rank
|
247 |
-
// For now, return a placeholder
|
248 |
-
return {
|
249 |
-
suit: CARD_SUITS[Math.floor(Math.random() * 4)],
|
250 |
-
rank: CARD_RANKS[Math.floor(Math.random() * 13)],
|
251 |
-
confidence: Math.random()
|
252 |
-
};
|
253 |
-
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|