Spaces:
Runtime error
Runtime error
| import argparse | |
| import cv2 | |
| import glob | |
| import numpy as np | |
| import os | |
| import torch | |
| from basicsr.utils import imwrite | |
| from gfpgan import GFPGANer | |
| def main(): | |
| """Inference demo for GFPGAN (for users). | |
| """ | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| '-i', | |
| '--input', | |
| type=str, | |
| default='inputs/whole_imgs', | |
| help='Input image or folder. Default: inputs/whole_imgs') | |
| parser.add_argument('-o', '--output', type=str, default='results', help='Output folder. Default: results') | |
| # we use version to select models, which is more user-friendly | |
| parser.add_argument( | |
| '-v', '--version', type=str, default='1.3', help='GFPGAN model version. Option: 1 | 1.2 | 1.3. Default: 1.3') | |
| parser.add_argument( | |
| '-s', '--upscale', type=int, default=2, help='The final upsampling scale of the image. Default: 2') | |
| parser.add_argument( | |
| '--bg_upsampler', type=str, default='realesrgan', help='background upsampler. Default: realesrgan') | |
| parser.add_argument( | |
| '--bg_tile', | |
| type=int, | |
| default=400, | |
| help='Tile size for background sampler, 0 for no tile during testing. Default: 400') | |
| parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces') | |
| parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face') | |
| parser.add_argument('--aligned', action='store_true', help='Input are aligned faces') | |
| parser.add_argument( | |
| '--ext', | |
| type=str, | |
| default='auto', | |
| help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto') | |
| parser.add_argument('-w', '--weight', type=float, default=0.5, help='Adjustable weights.') | |
| args = parser.parse_args() | |
| args = parser.parse_args() | |
| # ------------------------ input & output ------------------------ | |
| if args.input.endswith('/'): | |
| args.input = args.input[:-1] | |
| if os.path.isfile(args.input): | |
| img_list = [args.input] | |
| else: | |
| img_list = sorted(glob.glob(os.path.join(args.input, '*'))) | |
| os.makedirs(args.output, exist_ok=True) | |
| # ------------------------ set up background upsampler ------------------------ | |
| if args.bg_upsampler == 'realesrgan': | |
| if not torch.cuda.is_available(): # CPU | |
| import warnings | |
| warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. ' | |
| 'If you really want to use it, please modify the corresponding codes.') | |
| bg_upsampler = None | |
| else: | |
| from basicsr.archs.rrdbnet_arch import RRDBNet | |
| from realesrgan import RealESRGANer | |
| model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) | |
| bg_upsampler = RealESRGANer( | |
| scale=2, | |
| model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth', | |
| model=model, | |
| tile=args.bg_tile, | |
| tile_pad=10, | |
| pre_pad=0, | |
| half=True) # need to set False in CPU mode | |
| else: | |
| bg_upsampler = None | |
| # ------------------------ set up GFPGAN restorer ------------------------ | |
| if args.version == '1': | |
| arch = 'original' | |
| channel_multiplier = 1 | |
| model_name = 'GFPGANv1' | |
| url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth' | |
| elif args.version == '1.2': | |
| arch = 'clean' | |
| channel_multiplier = 2 | |
| model_name = 'GFPGANCleanv1-NoCE-C2' | |
| url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth' | |
| elif args.version == '1.3': | |
| arch = 'clean' | |
| channel_multiplier = 2 | |
| model_name = 'GFPGANv1.3' | |
| url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth' | |
| elif args.version == '1.4': | |
| arch = 'clean' | |
| channel_multiplier = 2 | |
| model_name = 'GFPGANv1.4' | |
| url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth' | |
| elif args.version == 'RestoreFormer': | |
| arch = 'RestoreFormer' | |
| channel_multiplier = 2 | |
| model_name = 'RestoreFormer' | |
| url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth' | |
| else: | |
| raise ValueError(f'Wrong model version {args.version}.') | |
| # determine model paths | |
| model_path = os.path.join('experiments/pretrained_models', model_name + '.pth') | |
| if not os.path.isfile(model_path): | |
| model_path = os.path.join('gfpgan/weights', model_name + '.pth') | |
| if not os.path.isfile(model_path): | |
| # download pre-trained models from url | |
| model_path = url | |
| restorer = GFPGANer( | |
| model_path=model_path, | |
| upscale=args.upscale, | |
| arch=arch, | |
| channel_multiplier=channel_multiplier, | |
| bg_upsampler=bg_upsampler) | |
| # ------------------------ restore ------------------------ | |
| for img_path in img_list: | |
| # read image | |
| img_name = os.path.basename(img_path) | |
| print(f'Processing {img_name} ...') | |
| basename, ext = os.path.splitext(img_name) | |
| input_img = cv2.imread(img_path, cv2.IMREAD_COLOR) | |
| # restore faces and background if necessary | |
| cropped_faces, restored_faces, restored_img = restorer.enhance( | |
| input_img, | |
| has_aligned=args.aligned, | |
| only_center_face=args.only_center_face, | |
| paste_back=True, | |
| weight=args.weight) | |
| # save faces | |
| for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)): | |
| # save cropped face | |
| save_crop_path = os.path.join(args.output, 'cropped_faces', f'{basename}_{idx:02d}.png') | |
| imwrite(cropped_face, save_crop_path) | |
| # save restored face | |
| if args.suffix is not None: | |
| save_face_name = f'{basename}_{idx:02d}_{args.suffix}.png' | |
| else: | |
| save_face_name = f'{basename}_{idx:02d}.png' | |
| save_restore_path = os.path.join(args.output, 'restored_faces', save_face_name) | |
| imwrite(restored_face, save_restore_path) | |
| # save comparison image | |
| cmp_img = np.concatenate((cropped_face, restored_face), axis=1) | |
| imwrite(cmp_img, os.path.join(args.output, 'cmp', f'{basename}_{idx:02d}.png')) | |
| # save restored img | |
| if restored_img is not None: | |
| if args.ext == 'auto': | |
| extension = ext[1:] | |
| else: | |
| extension = args.ext | |
| if args.suffix is not None: | |
| save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}_{args.suffix}.{extension}') | |
| else: | |
| save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}.{extension}') | |
| imwrite(restored_img, save_restore_path) | |
| print(f'Results are in the [{args.output}] folder.') | |
| if __name__ == '__main__': | |
| main() | |