Spaces:
Paused
Paused
| import gradio as gr | |
| import subprocess | |
| import os | |
| import shutil | |
| import tempfile | |
| """ | |
| # Set the PATH and LD_LIBRARY_PATH for CUDA 12.3 | |
| cuda_bin_path = "/usr/local/cuda/bin" | |
| cuda_lib_path = "/usr/local/cuda/lib64" | |
| # Update the environment variables | |
| os.environ['PATH'] = f"{cuda_bin_path}:{os.environ.get('PATH', '')}" | |
| os.environ['LD_LIBRARY_PATH'] = f"{cuda_lib_path}:{os.environ.get('LD_LIBRARY_PATH', '')}" | |
| """ | |
| # Install required package | |
| def install_flash_attn(): | |
| try: | |
| print("Installing flash-attn...") | |
| subprocess.run( | |
| ["pip", "install", "flash-attn", "--no-build-isolation"], | |
| check=True | |
| ) | |
| print("flash-attn installed successfully!") | |
| except subprocess.CalledProcessError as e: | |
| print(f"Failed to install flash-attn: {e}") | |
| exit(1) | |
| # Install flash-attn | |
| install_flash_attn() | |
| from huggingface_hub import snapshot_download | |
| # Create xcodec_mini_infer folder | |
| folder_path = './inference/xcodec_mini_infer' | |
| # Create the folder if it doesn't exist | |
| if not os.path.exists(folder_path): | |
| os.mkdir(folder_path) | |
| print(f"Folder created at: {folder_path}") | |
| else: | |
| print(f"Folder already exists at: {folder_path}") | |
| snapshot_download( | |
| repo_id = "m-a-p/xcodec_mini_infer", | |
| local_dir = "./inference/xcodec_mini_infer" | |
| ) | |
| # Change to the "inference" directory | |
| inference_dir = "./inference" | |
| try: | |
| os.chdir(inference_dir) | |
| print(f"Changed working directory to: {os.getcwd()}") | |
| except FileNotFoundError: | |
| print(f"Directory not found: {inference_dir}") | |
| exit(1) | |
| def empty_output_folder(output_dir): | |
| # List all files in the output directory | |
| files = os.listdir(output_dir) | |
| # Iterate over the files and remove them | |
| for file in files: | |
| file_path = os.path.join(output_dir, file) | |
| try: | |
| if os.path.isdir(file_path): | |
| # If it's a directory, remove it recursively | |
| shutil.rmtree(file_path) | |
| else: | |
| # If it's a file, delete it | |
| os.remove(file_path) | |
| except Exception as e: | |
| print(f"Error deleting file {file_path}: {e}") | |
| # Function to create a temporary file with string content | |
| def create_temp_file(content, prefix, suffix=".txt"): | |
| temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix) | |
| # Ensure content ends with newline and normalize line endings | |
| content = content.strip() + "\n\n" # Add extra newline at end | |
| content = content.replace("\r\n", "\n").replace("\r", "\n") | |
| temp_file.write(content) | |
| temp_file.close() | |
| # Debug: Print file contents | |
| print(f"\nContent written to {prefix}{suffix}:") | |
| print(content) | |
| print("---") | |
| return temp_file.name | |
| def get_last_mp3_file(output_dir): | |
| # List all files in the output directory | |
| files = os.listdir(output_dir) | |
| # Filter only .mp3 files | |
| mp3_files = [file for file in files if file.endswith('.mp3')] | |
| if not mp3_files: | |
| print("No .mp3 files found in the output folder.") | |
| return None | |
| # Get the full path for the mp3 files | |
| mp3_files_with_path = [os.path.join(output_dir, file) for file in mp3_files] | |
| # Sort the files based on the modification time (most recent first) | |
| mp3_files_with_path.sort(key=lambda x: os.path.getmtime(x), reverse=True) | |
| # Return the most recent .mp3 file | |
| return mp3_files_with_path[0] | |
| def infer(genre_txt_content, lyrics_txt_content): | |
| # Create temporary files | |
| genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_") | |
| lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_") | |
| print(f"Genre TXT path: {genre_txt_path}") | |
| print(f"Lyrics TXT path: {lyrics_txt_path}") | |
| # Ensure the output folder exists | |
| output_dir = "./output" | |
| os.makedirs(output_dir, exist_ok=True) | |
| print(f"Output folder ensured at: {output_dir}") | |
| empty_output_folder(output_dir) | |
| # Command and arguments with optimized settings | |
| command = [ | |
| "python", "infer.py", | |
| "--stage1_model", "m-a-p/YuE-s1-7B-anneal-en-cot", | |
| "--stage2_model", "m-a-p/YuE-s2-1B-general", | |
| "--genre_txt", f"{genre_txt_path}", | |
| "--lyrics_txt", f"{lyrics_txt_path}", | |
| "--run_n_segments", "2", | |
| "--stage2_batch_size", "8", # Increased from 4 to 8 | |
| "--output_dir", f"{output_dir}", | |
| "--cuda_idx", "0", | |
| "--max_new_tokens", "3000", | |
| "--disable_offload_model" | |
| ] | |
| # Set up environment variables for CUDA with optimized settings | |
| env = os.environ.copy() | |
| env.update({ | |
| "CUDA_VISIBLE_DEVICES": "0", | |
| "PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512", | |
| "CUDA_HOME": "/usr/local/cuda", | |
| "PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}", | |
| "LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}", | |
| "PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512,garbage_collection_threshold:0.8", # Added garbage collection threshold | |
| "TORCH_DISTRIBUTED_DEBUG": "DETAIL", # Added for better debugging | |
| "CUDA_LAUNCH_BLOCKING": "0" # Ensure asynchronous CUDA operations | |
| }) | |
| # Execute the command | |
| try: | |
| subprocess.run(command, check=True, env=env) | |
| print("Command executed successfully!") | |
| # Check and print the contents of the output folder | |
| output_files = os.listdir(output_dir) | |
| if output_files: | |
| print("Output folder contents:") | |
| for file in output_files: | |
| print(f"- {file}") | |
| last_mp3 = get_last_mp3_file(output_dir) | |
| if last_mp3: | |
| print("Last .mp3 file:", last_mp3) | |
| return last_mp3 | |
| else: | |
| return None | |
| else: | |
| print("Output folder is empty.") | |
| return None | |
| except subprocess.CalledProcessError as e: | |
| print(f"Error occurred: {e}") | |
| return None | |
| finally: | |
| # Clean up temporary files | |
| os.remove(genre_txt_path) | |
| os.remove(lyrics_txt_path) | |
| print("Temporary files deleted.") | |
| # Gradio | |
| with gr.Blocks() as demo: | |
| with gr.Column(): | |
| gr.Markdown("# YuE") | |
| with gr.Row(): | |
| with gr.Column(): | |
| genre_txt = gr.Textbox(label="Genre") | |
| lyrics_txt = gr.Textbox(label="Lyrics") | |
| submit_btn = gr.Button("Submit") | |
| with gr.Column(): | |
| music_out = gr.Audio(label="Audio Result") | |
| submit_btn.click( | |
| fn = infer, | |
| inputs = [genre_txt, lyrics_txt], | |
| outputs = [music_out] | |
| ) | |
| demo.queue().launch(show_api=False, show_error=True) |