|
import streamlit as st
|
|
from langchain.prompts import PromptTemplate
|
|
from langchain.chains import LLMChain
|
|
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
import fitz
|
|
import json
|
|
|
|
|
|
st.title("π PDF-based MCQ Generator")
|
|
|
|
|
|
st.sidebar.title("Upload & Settings")
|
|
|
|
|
|
pdf_file = st.sidebar.file_uploader("Upload a PDF file", type=["pdf"])
|
|
|
|
|
|
number_of_questions = st.sidebar.slider("Number of questions", min_value=1, max_value=20, value=5)
|
|
|
|
|
|
if "mcqs" not in st.session_state:
|
|
st.session_state.mcqs = []
|
|
if "current_q" not in st.session_state:
|
|
st.session_state.current_q = 0
|
|
if "user_answers" not in st.session_state:
|
|
st.session_state.user_answers = {}
|
|
if "quiz_finished" not in st.session_state:
|
|
st.session_state.quiz_finished = False
|
|
|
|
|
|
GOOGLE_API_KEY = "AIzaSyCB5NLx39vOAlfRQBDmnEG3uLBgLraGvH4"
|
|
llm = ChatGoogleGenerativeAI(
|
|
model="gemini-2.0-flash",
|
|
google_api_key=GOOGLE_API_KEY,
|
|
temperature=0.7
|
|
)
|
|
|
|
template = """
|
|
You are an expert MCQ generator. Generate {number} unique multiple-choice questions from the given text.
|
|
Each question must have exactly 1 correct answer and 3 incorrect options.
|
|
Strictly return output in the following JSON format (no explanations, no markdown):
|
|
|
|
[
|
|
{{
|
|
"question": "What is ...?",
|
|
"options": ["Option A", "Option B", "Option C", "Option D"],
|
|
"answer": "Option D"
|
|
}},
|
|
...
|
|
]
|
|
|
|
TEXT:
|
|
{text}
|
|
"""
|
|
|
|
prompt = PromptTemplate(
|
|
input_variables=["text", "number"],
|
|
template=template
|
|
)
|
|
|
|
mcq_chain = LLMChain(llm=llm, prompt=prompt)
|
|
|
|
|
|
def extract_text_from_pdf(pdf):
|
|
doc = fitz.open(stream=pdf.read(), filetype="pdf")
|
|
full_text = ""
|
|
for page in doc:
|
|
full_text += page.get_text()
|
|
doc.close()
|
|
return full_text
|
|
|
|
|
|
if st.sidebar.button("Generate MCQs"):
|
|
if pdf_file is None:
|
|
st.error("Please upload a PDF file.")
|
|
else:
|
|
with st.spinner("Extracting text and generating MCQs..."):
|
|
text = extract_text_from_pdf(pdf_file)
|
|
try:
|
|
response = mcq_chain.run(text=text, number=str(number_of_questions))
|
|
|
|
|
|
mcqs_json = json.loads(response.strip()[8:-3])
|
|
st.session_state.mcqs = mcqs_json
|
|
st.session_state.current_q = 0
|
|
st.session_state.user_answers = {}
|
|
st.session_state.quiz_finished = False
|
|
st.success("β
MCQs generated successfully!")
|
|
except Exception as e:
|
|
st.error(f"Error generating MCQs: {e}")
|
|
|
|
|
|
if st.session_state.mcqs and not st.session_state.quiz_finished:
|
|
idx = st.session_state.current_q
|
|
q_data = st.session_state.mcqs[idx]
|
|
|
|
st.subheader(f"Question {idx + 1}: {q_data['question']}")
|
|
selected_option = st.radio(
|
|
"Choose an answer:",
|
|
q_data["options"],
|
|
key=f"radio_{idx}"
|
|
)
|
|
|
|
if st.button("Next"):
|
|
st.session_state.user_answers[idx] = selected_option
|
|
|
|
if st.session_state.current_q < len(st.session_state.mcqs) - 1:
|
|
st.session_state.current_q += 1
|
|
else:
|
|
st.session_state.quiz_finished = True
|
|
st.success("π Quiz completed!")
|
|
|
|
|
|
if st.session_state.quiz_finished:
|
|
st.header("π Quiz Results")
|
|
score = 0
|
|
total = len(st.session_state.mcqs)
|
|
|
|
for i, q in enumerate(st.session_state.mcqs):
|
|
user_ans = st.session_state.user_answers.get(i)
|
|
correct_ans = q["answer"]
|
|
if user_ans == correct_ans:
|
|
score += 1
|
|
st.markdown(f"**Q{i+1}: {q['question']}**")
|
|
st.markdown(f"- Your answer: {user_ans}")
|
|
st.markdown(f"- Correct answer: {correct_ans}")
|
|
st.markdown("---")
|
|
|
|
st.success(f"β
You scored {score} out of {total}")
|
|
|