Spaces:
Paused
Paused
| from typing import * | |
| import torch | |
| import torch.nn as nn | |
| from ..attention import MultiHeadAttention | |
| from ..norm import LayerNorm32 | |
| from .blocks import FeedForwardNet | |
| class ModulatedTransformerBlock(nn.Module): | |
| """ | |
| Transformer block (MSA + FFN) with adaptive layer norm conditioning. | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| num_heads: int, | |
| mlp_ratio: float = 4.0, | |
| attn_mode: Literal["full", "windowed"] = "full", | |
| window_size: Optional[int] = None, | |
| shift_window: Optional[Tuple[int, int, int]] = None, | |
| use_checkpoint: bool = False, | |
| use_rope: bool = False, | |
| qk_rms_norm: bool = False, | |
| qkv_bias: bool = True, | |
| share_mod: bool = False, | |
| ): | |
| super().__init__() | |
| self.use_checkpoint = use_checkpoint | |
| self.share_mod = share_mod | |
| self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6) | |
| self.norm2 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6) | |
| self.attn = MultiHeadAttention( | |
| channels, | |
| num_heads=num_heads, | |
| attn_mode=attn_mode, | |
| window_size=window_size, | |
| shift_window=shift_window, | |
| qkv_bias=qkv_bias, | |
| use_rope=use_rope, | |
| qk_rms_norm=qk_rms_norm, | |
| ) | |
| self.mlp = FeedForwardNet( | |
| channels, | |
| mlp_ratio=mlp_ratio, | |
| ) | |
| if not share_mod: | |
| self.adaLN_modulation = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(channels, 6 * channels, bias=True) | |
| ) | |
| def _forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor: | |
| if self.share_mod: | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1) | |
| else: | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1) | |
| h = self.norm1(x) | |
| h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1) | |
| h = self.attn(h) | |
| h = h * gate_msa.unsqueeze(1) | |
| x = x + h | |
| h = self.norm2(x) | |
| h = h * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1) | |
| h = self.mlp(h) | |
| h = h * gate_mlp.unsqueeze(1) | |
| x = x + h | |
| return x | |
| def forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor: | |
| if self.use_checkpoint: | |
| return torch.utils.checkpoint.checkpoint(self._forward, x, mod, use_reentrant=False) | |
| else: | |
| return self._forward(x, mod) | |
| class ModulatedTransformerCrossBlock(nn.Module): | |
| """ | |
| Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning. | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| ctx_channels: int, | |
| num_heads: int, | |
| mlp_ratio: float = 4.0, | |
| attn_mode: Literal["full", "windowed"] = "full", | |
| window_size: Optional[int] = None, | |
| shift_window: Optional[Tuple[int, int, int]] = None, | |
| use_checkpoint: bool = False, | |
| use_rope: bool = False, | |
| qk_rms_norm: bool = False, | |
| qk_rms_norm_cross: bool = False, | |
| qkv_bias: bool = True, | |
| share_mod: bool = False, | |
| ): | |
| super().__init__() | |
| self.use_checkpoint = use_checkpoint | |
| self.share_mod = share_mod | |
| self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6) | |
| self.norm2 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6) | |
| self.norm3 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6) | |
| self.self_attn = MultiHeadAttention( | |
| channels, | |
| num_heads=num_heads, | |
| type="self", | |
| attn_mode=attn_mode, | |
| window_size=window_size, | |
| shift_window=shift_window, | |
| qkv_bias=qkv_bias, | |
| use_rope=use_rope, | |
| qk_rms_norm=qk_rms_norm, | |
| ) | |
| self.cross_attn = MultiHeadAttention( | |
| channels, | |
| ctx_channels=ctx_channels, | |
| num_heads=num_heads, | |
| type="cross", | |
| attn_mode="full", | |
| qkv_bias=qkv_bias, | |
| qk_rms_norm=qk_rms_norm_cross, | |
| ) | |
| self.mlp = FeedForwardNet( | |
| channels, | |
| mlp_ratio=mlp_ratio, | |
| ) | |
| if not share_mod: | |
| self.adaLN_modulation = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(channels, 6 * channels, bias=True) | |
| ) | |
| def _forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor): | |
| if self.share_mod: | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1) | |
| else: | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1) | |
| h = self.norm1(x) | |
| h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1) | |
| h = self.self_attn(h) | |
| h = h * gate_msa.unsqueeze(1) | |
| x = x + h | |
| h = self.norm2(x) | |
| h = self.cross_attn(h, context) | |
| x = x + h | |
| h = self.norm3(x) | |
| h = h * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1) | |
| h = self.mlp(h) | |
| h = h * gate_mlp.unsqueeze(1) | |
| x = x + h | |
| return x | |
| def forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor): | |
| if self.use_checkpoint: | |
| return torch.utils.checkpoint.checkpoint(self._forward, x, mod, context, use_reentrant=False) | |
| else: | |
| return self._forward(x, mod, context) | |