Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
from gradio_litmodel3d import LitModel3D
|
|
|
|
| 4 |
|
| 5 |
import os
|
| 6 |
os.environ['SPCONV_ALGO'] = 'native'
|
|
@@ -78,6 +79,19 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
| 78 |
return gs, mesh, state['trial_id']
|
| 79 |
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
@spaces.GPU
|
| 82 |
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
|
| 83 |
"""
|
|
@@ -160,6 +174,10 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 160 |
|
| 161 |
with gr.Row():
|
| 162 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
|
| 164 |
|
| 165 |
with gr.Accordion(label="Generation Settings", open=False):
|
|
@@ -205,6 +223,16 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 205 |
)
|
| 206 |
|
| 207 |
# Handlers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
image_prompt.upload(
|
| 209 |
preprocess_image,
|
| 210 |
inputs=[image_prompt],
|
|
@@ -248,6 +276,11 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 248 |
if __name__ == "__main__":
|
| 249 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
| 250 |
pipeline.cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
try:
|
| 252 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
| 253 |
except:
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
from gradio_litmodel3d import LitModel3D
|
| 4 |
+
from diffusers import StableDiffusionPipeline
|
| 5 |
|
| 6 |
import os
|
| 7 |
os.environ['SPCONV_ALGO'] = 'native'
|
|
|
|
| 79 |
return gs, mesh, state['trial_id']
|
| 80 |
|
| 81 |
|
| 82 |
+
@spaces.GPU
|
| 83 |
+
def text_to_image(prompt: str, seed: int, randomize_seed: bool) -> Image.Image:
|
| 84 |
+
"""
|
| 85 |
+
Generate image from text prompt using Stable Diffusion.
|
| 86 |
+
"""
|
| 87 |
+
if randomize_seed:
|
| 88 |
+
seed = np.random.randint(0, MAX_SEED)
|
| 89 |
+
|
| 90 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 91 |
+
image = text2img_pipeline(prompt, generator=generator).images[0]
|
| 92 |
+
return image
|
| 93 |
+
|
| 94 |
+
|
| 95 |
@spaces.GPU
|
| 96 |
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
|
| 97 |
"""
|
|
|
|
| 174 |
|
| 175 |
with gr.Row():
|
| 176 |
with gr.Column():
|
| 177 |
+
# Text to Image 부분 추가
|
| 178 |
+
text_prompt = gr.Textbox(label="Text Prompt", placeholder="Enter your text prompt here...")
|
| 179 |
+
generate_image_btn = gr.Button("Generate Image")
|
| 180 |
+
|
| 181 |
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
|
| 182 |
|
| 183 |
with gr.Accordion(label="Generation Settings", open=False):
|
|
|
|
| 223 |
)
|
| 224 |
|
| 225 |
# Handlers
|
| 226 |
+
generate_image_btn.click(
|
| 227 |
+
text_to_image,
|
| 228 |
+
inputs=[text_prompt, seed, randomize_seed],
|
| 229 |
+
outputs=[image_prompt],
|
| 230 |
+
).then(
|
| 231 |
+
preprocess_image,
|
| 232 |
+
inputs=[image_prompt],
|
| 233 |
+
outputs=[trial_id, image_prompt],
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
image_prompt.upload(
|
| 237 |
preprocess_image,
|
| 238 |
inputs=[image_prompt],
|
|
|
|
| 276 |
if __name__ == "__main__":
|
| 277 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
| 278 |
pipeline.cuda()
|
| 279 |
+
|
| 280 |
+
# Stable Diffusion pipeline 추가
|
| 281 |
+
text2img_pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
| 282 |
+
text2img_pipeline.to("cuda")
|
| 283 |
+
|
| 284 |
try:
|
| 285 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
| 286 |
except:
|