| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch as th | 
					
					
						
						| 
							 | 
						import torch.nn as nn | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from ..ldm.modules.diffusionmodules.util import ( | 
					
					
						
						| 
							 | 
						    zero_module, | 
					
					
						
						| 
							 | 
						    timestep_embedding, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from ..ldm.modules.attention import SpatialTransformer | 
					
					
						
						| 
							 | 
						from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample | 
					
					
						
						| 
							 | 
						from ..ldm.util import exists | 
					
					
						
						| 
							 | 
						from .control_types import UNION_CONTROLNET_TYPES | 
					
					
						
						| 
							 | 
						from collections import OrderedDict | 
					
					
						
						| 
							 | 
						import comfy.ops | 
					
					
						
						| 
							 | 
						from comfy.ldm.modules.attention import optimized_attention | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class OptimizedAttention(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.heads = nhead | 
					
					
						
						| 
							 | 
						        self.c = c | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device) | 
					
					
						
						| 
							 | 
						        self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						        x = self.in_proj(x) | 
					
					
						
						| 
							 | 
						        q, k, v = x.split(self.c, dim=2) | 
					
					
						
						| 
							 | 
						        out = optimized_attention(q, k, v, self.heads) | 
					
					
						
						| 
							 | 
						        return self.out_proj(out) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class QuickGELU(nn.Module): | 
					
					
						
						| 
							 | 
						    def forward(self, x: torch.Tensor): | 
					
					
						
						| 
							 | 
						        return x * torch.sigmoid(1.702 * x) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class ResBlockUnionControlnet(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, dim, nhead, dtype=None, device=None, operations=None): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations) | 
					
					
						
						| 
							 | 
						        self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device) | 
					
					
						
						| 
							 | 
						        self.mlp = nn.Sequential( | 
					
					
						
						| 
							 | 
						            OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()), | 
					
					
						
						| 
							 | 
						                         ("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))])) | 
					
					
						
						| 
							 | 
						        self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def attention(self, x: torch.Tensor): | 
					
					
						
						| 
							 | 
						        return self.attn(x) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x: torch.Tensor): | 
					
					
						
						| 
							 | 
						        x = x + self.attention(self.ln_1(x)) | 
					
					
						
						| 
							 | 
						        x = x + self.mlp(self.ln_2(x)) | 
					
					
						
						| 
							 | 
						        return x | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class ControlledUnetModel(UNetModel): | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    pass | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class ControlNet(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        image_size, | 
					
					
						
						| 
							 | 
						        in_channels, | 
					
					
						
						| 
							 | 
						        model_channels, | 
					
					
						
						| 
							 | 
						        hint_channels, | 
					
					
						
						| 
							 | 
						        num_res_blocks, | 
					
					
						
						| 
							 | 
						        dropout=0, | 
					
					
						
						| 
							 | 
						        channel_mult=(1, 2, 4, 8), | 
					
					
						
						| 
							 | 
						        conv_resample=True, | 
					
					
						
						| 
							 | 
						        dims=2, | 
					
					
						
						| 
							 | 
						        num_classes=None, | 
					
					
						
						| 
							 | 
						        use_checkpoint=False, | 
					
					
						
						| 
							 | 
						        dtype=torch.float32, | 
					
					
						
						| 
							 | 
						        num_heads=-1, | 
					
					
						
						| 
							 | 
						        num_head_channels=-1, | 
					
					
						
						| 
							 | 
						        num_heads_upsample=-1, | 
					
					
						
						| 
							 | 
						        use_scale_shift_norm=False, | 
					
					
						
						| 
							 | 
						        resblock_updown=False, | 
					
					
						
						| 
							 | 
						        use_new_attention_order=False, | 
					
					
						
						| 
							 | 
						        use_spatial_transformer=False,     | 
					
					
						
						| 
							 | 
						        transformer_depth=1,               | 
					
					
						
						| 
							 | 
						        context_dim=None,                  | 
					
					
						
						| 
							 | 
						        n_embed=None,                      | 
					
					
						
						| 
							 | 
						        legacy=True, | 
					
					
						
						| 
							 | 
						        disable_self_attentions=None, | 
					
					
						
						| 
							 | 
						        num_attention_blocks=None, | 
					
					
						
						| 
							 | 
						        disable_middle_self_attn=False, | 
					
					
						
						| 
							 | 
						        use_linear_in_transformer=False, | 
					
					
						
						| 
							 | 
						        adm_in_channels=None, | 
					
					
						
						| 
							 | 
						        transformer_depth_middle=None, | 
					
					
						
						| 
							 | 
						        transformer_depth_output=None, | 
					
					
						
						| 
							 | 
						        attn_precision=None, | 
					
					
						
						| 
							 | 
						        union_controlnet_num_control_type=None, | 
					
					
						
						| 
							 | 
						        device=None, | 
					
					
						
						| 
							 | 
						        operations=comfy.ops.disable_weight_init, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        assert use_spatial_transformer == True, "use_spatial_transformer has to be true" | 
					
					
						
						| 
							 | 
						        if use_spatial_transformer: | 
					
					
						
						| 
							 | 
						            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if context_dim is not None: | 
					
					
						
						| 
							 | 
						            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if num_heads_upsample == -1: | 
					
					
						
						| 
							 | 
						            num_heads_upsample = num_heads | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if num_heads == -1: | 
					
					
						
						| 
							 | 
						            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if num_head_channels == -1: | 
					
					
						
						| 
							 | 
						            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.dims = dims | 
					
					
						
						| 
							 | 
						        self.image_size = image_size | 
					
					
						
						| 
							 | 
						        self.in_channels = in_channels | 
					
					
						
						| 
							 | 
						        self.model_channels = model_channels | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if isinstance(num_res_blocks, int): | 
					
					
						
						| 
							 | 
						            self.num_res_blocks = len(channel_mult) * [num_res_blocks] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            if len(num_res_blocks) != len(channel_mult): | 
					
					
						
						| 
							 | 
						                raise ValueError("provide num_res_blocks either as an int (globally constant) or " | 
					
					
						
						| 
							 | 
						                                 "as a list/tuple (per-level) with the same length as channel_mult") | 
					
					
						
						| 
							 | 
						            self.num_res_blocks = num_res_blocks | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if disable_self_attentions is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            assert len(disable_self_attentions) == len(channel_mult) | 
					
					
						
						| 
							 | 
						        if num_attention_blocks is not None: | 
					
					
						
						| 
							 | 
						            assert len(num_attention_blocks) == len(self.num_res_blocks) | 
					
					
						
						| 
							 | 
						            assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        transformer_depth = transformer_depth[:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.dropout = dropout | 
					
					
						
						| 
							 | 
						        self.channel_mult = channel_mult | 
					
					
						
						| 
							 | 
						        self.conv_resample = conv_resample | 
					
					
						
						| 
							 | 
						        self.num_classes = num_classes | 
					
					
						
						| 
							 | 
						        self.use_checkpoint = use_checkpoint | 
					
					
						
						| 
							 | 
						        self.dtype = dtype | 
					
					
						
						| 
							 | 
						        self.num_heads = num_heads | 
					
					
						
						| 
							 | 
						        self.num_head_channels = num_head_channels | 
					
					
						
						| 
							 | 
						        self.num_heads_upsample = num_heads_upsample | 
					
					
						
						| 
							 | 
						        self.predict_codebook_ids = n_embed is not None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        time_embed_dim = model_channels * 4 | 
					
					
						
						| 
							 | 
						        self.time_embed = nn.Sequential( | 
					
					
						
						| 
							 | 
						            operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), | 
					
					
						
						| 
							 | 
						            nn.SiLU(), | 
					
					
						
						| 
							 | 
						            operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.num_classes is not None: | 
					
					
						
						| 
							 | 
						            if isinstance(self.num_classes, int): | 
					
					
						
						| 
							 | 
						                self.label_emb = nn.Embedding(num_classes, time_embed_dim) | 
					
					
						
						| 
							 | 
						            elif self.num_classes == "continuous": | 
					
					
						
						| 
							 | 
						                print("setting up linear c_adm embedding layer") | 
					
					
						
						| 
							 | 
						                self.label_emb = nn.Linear(1, time_embed_dim) | 
					
					
						
						| 
							 | 
						            elif self.num_classes == "sequential": | 
					
					
						
						| 
							 | 
						                assert adm_in_channels is not None | 
					
					
						
						| 
							 | 
						                self.label_emb = nn.Sequential( | 
					
					
						
						| 
							 | 
						                    nn.Sequential( | 
					
					
						
						| 
							 | 
						                        operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), | 
					
					
						
						| 
							 | 
						                        nn.SiLU(), | 
					
					
						
						| 
							 | 
						                        operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                raise ValueError() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.input_blocks = nn.ModuleList( | 
					
					
						
						| 
							 | 
						            [ | 
					
					
						
						| 
							 | 
						                TimestepEmbedSequential( | 
					
					
						
						| 
							 | 
						                    operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.input_hint_block = TimestepEmbedSequential( | 
					
					
						
						| 
							 | 
						                    operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device), | 
					
					
						
						| 
							 | 
						                    nn.SiLU(), | 
					
					
						
						| 
							 | 
						                    operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device), | 
					
					
						
						| 
							 | 
						                    nn.SiLU(), | 
					
					
						
						| 
							 | 
						                    operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device), | 
					
					
						
						| 
							 | 
						                    nn.SiLU(), | 
					
					
						
						| 
							 | 
						                    operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device), | 
					
					
						
						| 
							 | 
						                    nn.SiLU(), | 
					
					
						
						| 
							 | 
						                    operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device), | 
					
					
						
						| 
							 | 
						                    nn.SiLU(), | 
					
					
						
						| 
							 | 
						                    operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device), | 
					
					
						
						| 
							 | 
						                    nn.SiLU(), | 
					
					
						
						| 
							 | 
						                    operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device), | 
					
					
						
						| 
							 | 
						                    nn.SiLU(), | 
					
					
						
						| 
							 | 
						                    operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self._feature_size = model_channels | 
					
					
						
						| 
							 | 
						        input_block_chans = [model_channels] | 
					
					
						
						| 
							 | 
						        ch = model_channels | 
					
					
						
						| 
							 | 
						        ds = 1 | 
					
					
						
						| 
							 | 
						        for level, mult in enumerate(channel_mult): | 
					
					
						
						| 
							 | 
						            for nr in range(self.num_res_blocks[level]): | 
					
					
						
						| 
							 | 
						                layers = [ | 
					
					
						
						| 
							 | 
						                    ResBlock( | 
					
					
						
						| 
							 | 
						                        ch, | 
					
					
						
						| 
							 | 
						                        time_embed_dim, | 
					
					
						
						| 
							 | 
						                        dropout, | 
					
					
						
						| 
							 | 
						                        out_channels=mult * model_channels, | 
					
					
						
						| 
							 | 
						                        dims=dims, | 
					
					
						
						| 
							 | 
						                        use_checkpoint=use_checkpoint, | 
					
					
						
						| 
							 | 
						                        use_scale_shift_norm=use_scale_shift_norm, | 
					
					
						
						| 
							 | 
						                        dtype=self.dtype, | 
					
					
						
						| 
							 | 
						                        device=device, | 
					
					
						
						| 
							 | 
						                        operations=operations, | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                ] | 
					
					
						
						| 
							 | 
						                ch = mult * model_channels | 
					
					
						
						| 
							 | 
						                num_transformers = transformer_depth.pop(0) | 
					
					
						
						| 
							 | 
						                if num_transformers > 0: | 
					
					
						
						| 
							 | 
						                    if num_head_channels == -1: | 
					
					
						
						| 
							 | 
						                        dim_head = ch // num_heads | 
					
					
						
						| 
							 | 
						                    else: | 
					
					
						
						| 
							 | 
						                        num_heads = ch // num_head_channels | 
					
					
						
						| 
							 | 
						                        dim_head = num_head_channels | 
					
					
						
						| 
							 | 
						                    if legacy: | 
					
					
						
						| 
							 | 
						                         | 
					
					
						
						| 
							 | 
						                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | 
					
					
						
						| 
							 | 
						                    if exists(disable_self_attentions): | 
					
					
						
						| 
							 | 
						                        disabled_sa = disable_self_attentions[level] | 
					
					
						
						| 
							 | 
						                    else: | 
					
					
						
						| 
							 | 
						                        disabled_sa = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | 
					
					
						
						| 
							 | 
						                        layers.append( | 
					
					
						
						| 
							 | 
						                            SpatialTransformer( | 
					
					
						
						| 
							 | 
						                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, | 
					
					
						
						| 
							 | 
						                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | 
					
					
						
						| 
							 | 
						                                use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations | 
					
					
						
						| 
							 | 
						                            ) | 
					
					
						
						| 
							 | 
						                        ) | 
					
					
						
						| 
							 | 
						                self.input_blocks.append(TimestepEmbedSequential(*layers)) | 
					
					
						
						| 
							 | 
						                self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)) | 
					
					
						
						| 
							 | 
						                self._feature_size += ch | 
					
					
						
						| 
							 | 
						                input_block_chans.append(ch) | 
					
					
						
						| 
							 | 
						            if level != len(channel_mult) - 1: | 
					
					
						
						| 
							 | 
						                out_ch = ch | 
					
					
						
						| 
							 | 
						                self.input_blocks.append( | 
					
					
						
						| 
							 | 
						                    TimestepEmbedSequential( | 
					
					
						
						| 
							 | 
						                        ResBlock( | 
					
					
						
						| 
							 | 
						                            ch, | 
					
					
						
						| 
							 | 
						                            time_embed_dim, | 
					
					
						
						| 
							 | 
						                            dropout, | 
					
					
						
						| 
							 | 
						                            out_channels=out_ch, | 
					
					
						
						| 
							 | 
						                            dims=dims, | 
					
					
						
						| 
							 | 
						                            use_checkpoint=use_checkpoint, | 
					
					
						
						| 
							 | 
						                            use_scale_shift_norm=use_scale_shift_norm, | 
					
					
						
						| 
							 | 
						                            down=True, | 
					
					
						
						| 
							 | 
						                            dtype=self.dtype, | 
					
					
						
						| 
							 | 
						                            device=device, | 
					
					
						
						| 
							 | 
						                            operations=operations | 
					
					
						
						| 
							 | 
						                        ) | 
					
					
						
						| 
							 | 
						                        if resblock_updown | 
					
					
						
						| 
							 | 
						                        else Downsample( | 
					
					
						
						| 
							 | 
						                            ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations | 
					
					
						
						| 
							 | 
						                        ) | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                ch = out_ch | 
					
					
						
						| 
							 | 
						                input_block_chans.append(ch) | 
					
					
						
						| 
							 | 
						                self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)) | 
					
					
						
						| 
							 | 
						                ds *= 2 | 
					
					
						
						| 
							 | 
						                self._feature_size += ch | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if num_head_channels == -1: | 
					
					
						
						| 
							 | 
						            dim_head = ch // num_heads | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            num_heads = ch // num_head_channels | 
					
					
						
						| 
							 | 
						            dim_head = num_head_channels | 
					
					
						
						| 
							 | 
						        if legacy: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | 
					
					
						
						| 
							 | 
						        mid_block = [ | 
					
					
						
						| 
							 | 
						            ResBlock( | 
					
					
						
						| 
							 | 
						                ch, | 
					
					
						
						| 
							 | 
						                time_embed_dim, | 
					
					
						
						| 
							 | 
						                dropout, | 
					
					
						
						| 
							 | 
						                dims=dims, | 
					
					
						
						| 
							 | 
						                use_checkpoint=use_checkpoint, | 
					
					
						
						| 
							 | 
						                use_scale_shift_norm=use_scale_shift_norm, | 
					
					
						
						| 
							 | 
						                dtype=self.dtype, | 
					
					
						
						| 
							 | 
						                device=device, | 
					
					
						
						| 
							 | 
						                operations=operations | 
					
					
						
						| 
							 | 
						            )] | 
					
					
						
						| 
							 | 
						        if transformer_depth_middle >= 0: | 
					
					
						
						| 
							 | 
						            mid_block += [SpatialTransformer(   | 
					
					
						
						| 
							 | 
						                            ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, | 
					
					
						
						| 
							 | 
						                            disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, | 
					
					
						
						| 
							 | 
						                            use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations | 
					
					
						
						| 
							 | 
						                        ), | 
					
					
						
						| 
							 | 
						            ResBlock( | 
					
					
						
						| 
							 | 
						                ch, | 
					
					
						
						| 
							 | 
						                time_embed_dim, | 
					
					
						
						| 
							 | 
						                dropout, | 
					
					
						
						| 
							 | 
						                dims=dims, | 
					
					
						
						| 
							 | 
						                use_checkpoint=use_checkpoint, | 
					
					
						
						| 
							 | 
						                use_scale_shift_norm=use_scale_shift_norm, | 
					
					
						
						| 
							 | 
						                dtype=self.dtype, | 
					
					
						
						| 
							 | 
						                device=device, | 
					
					
						
						| 
							 | 
						                operations=operations | 
					
					
						
						| 
							 | 
						            )] | 
					
					
						
						| 
							 | 
						        self.middle_block = TimestepEmbedSequential(*mid_block) | 
					
					
						
						| 
							 | 
						        self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device) | 
					
					
						
						| 
							 | 
						        self._feature_size += ch | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if union_controlnet_num_control_type is not None: | 
					
					
						
						| 
							 | 
						            self.num_control_type = union_controlnet_num_control_type | 
					
					
						
						| 
							 | 
						            num_trans_channel = 320 | 
					
					
						
						| 
							 | 
						            num_trans_head = 8 | 
					
					
						
						| 
							 | 
						            num_trans_layer = 1 | 
					
					
						
						| 
							 | 
						            num_proj_channel = 320 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)]) | 
					
					
						
						| 
							 | 
						            self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            control_add_embed_dim = 256 | 
					
					
						
						| 
							 | 
						            class ControlAddEmbedding(nn.Module): | 
					
					
						
						| 
							 | 
						                def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None): | 
					
					
						
						| 
							 | 
						                    super().__init__() | 
					
					
						
						| 
							 | 
						                    self.num_control_type = num_control_type | 
					
					
						
						| 
							 | 
						                    self.in_dim = in_dim | 
					
					
						
						| 
							 | 
						                    self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device) | 
					
					
						
						| 
							 | 
						                    self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device) | 
					
					
						
						| 
							 | 
						                def forward(self, control_type, dtype, device): | 
					
					
						
						| 
							 | 
						                    c_type = torch.zeros((self.num_control_type,), device=device) | 
					
					
						
						| 
							 | 
						                    c_type[control_type] = 1.0 | 
					
					
						
						| 
							 | 
						                    c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim)) | 
					
					
						
						| 
							 | 
						                    return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type))) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.task_embedding = None | 
					
					
						
						| 
							 | 
						            self.control_add_embedding = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def union_controlnet_merge(self, hint, control_type, emb, context): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        inputs = [] | 
					
					
						
						| 
							 | 
						        condition_list = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for idx in range(min(1, len(control_type))): | 
					
					
						
						| 
							 | 
						            controlnet_cond = self.input_hint_block(hint[idx], emb, context) | 
					
					
						
						| 
							 | 
						            feat_seq = torch.mean(controlnet_cond, dim=(2, 3)) | 
					
					
						
						| 
							 | 
						            if idx < len(control_type): | 
					
					
						
						| 
							 | 
						                feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            inputs.append(feat_seq.unsqueeze(1)) | 
					
					
						
						| 
							 | 
						            condition_list.append(controlnet_cond) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        x = torch.cat(inputs, dim=1) | 
					
					
						
						| 
							 | 
						        x = self.transformer_layes(x) | 
					
					
						
						| 
							 | 
						        controlnet_cond_fuser = None | 
					
					
						
						| 
							 | 
						        for idx in range(len(control_type)): | 
					
					
						
						| 
							 | 
						            alpha = self.spatial_ch_projs(x[:, idx]) | 
					
					
						
						| 
							 | 
						            alpha = alpha.unsqueeze(-1).unsqueeze(-1) | 
					
					
						
						| 
							 | 
						            o = condition_list[idx] + alpha | 
					
					
						
						| 
							 | 
						            if controlnet_cond_fuser is None: | 
					
					
						
						| 
							 | 
						                controlnet_cond_fuser = o | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                controlnet_cond_fuser += o | 
					
					
						
						| 
							 | 
						        return controlnet_cond_fuser | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def make_zero_conv(self, channels, operations=None, dtype=None, device=None): | 
					
					
						
						| 
							 | 
						        return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x, hint, timesteps, context, y=None, **kwargs): | 
					
					
						
						| 
							 | 
						        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) | 
					
					
						
						| 
							 | 
						        emb = self.time_embed(t_emb) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        guided_hint = None | 
					
					
						
						| 
							 | 
						        if self.control_add_embedding is not None:  | 
					
					
						
						| 
							 | 
						            control_type = kwargs.get("control_type", []) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if any([c >= self.num_control_type for c in control_type]): | 
					
					
						
						| 
							 | 
						                max_type = max(control_type) | 
					
					
						
						| 
							 | 
						                max_type_name = { | 
					
					
						
						| 
							 | 
						                    v: k for k, v in UNION_CONTROLNET_TYPES.items() | 
					
					
						
						| 
							 | 
						                }[max_type] | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"Control type {max_type_name}({max_type}) is out of range for the number of control types" + | 
					
					
						
						| 
							 | 
						                    f"({self.num_control_type}) supported.\n" + | 
					
					
						
						| 
							 | 
						                    "Please consider using the ProMax ControlNet Union model.\n" + | 
					
					
						
						| 
							 | 
						                    "https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            emb += self.control_add_embedding(control_type, emb.dtype, emb.device) | 
					
					
						
						| 
							 | 
						            if len(control_type) > 0: | 
					
					
						
						| 
							 | 
						                if len(hint.shape) < 5: | 
					
					
						
						| 
							 | 
						                    hint = hint.unsqueeze(dim=0) | 
					
					
						
						| 
							 | 
						                guided_hint = self.union_controlnet_merge(hint, control_type, emb, context) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if guided_hint is None: | 
					
					
						
						| 
							 | 
						            guided_hint = self.input_hint_block(hint, emb, context) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        out_output = [] | 
					
					
						
						| 
							 | 
						        out_middle = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hs = [] | 
					
					
						
						| 
							 | 
						        if self.num_classes is not None: | 
					
					
						
						| 
							 | 
						            assert y.shape[0] == x.shape[0] | 
					
					
						
						| 
							 | 
						            emb = emb + self.label_emb(y) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        h = x | 
					
					
						
						| 
							 | 
						        for module, zero_conv in zip(self.input_blocks, self.zero_convs): | 
					
					
						
						| 
							 | 
						            if guided_hint is not None: | 
					
					
						
						| 
							 | 
						                h = module(h, emb, context) | 
					
					
						
						| 
							 | 
						                h += guided_hint | 
					
					
						
						| 
							 | 
						                guided_hint = None | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                h = module(h, emb, context) | 
					
					
						
						| 
							 | 
						            out_output.append(zero_conv(h, emb, context)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        h = self.middle_block(h, emb, context) | 
					
					
						
						| 
							 | 
						        out_middle.append(self.middle_block_out(h, emb, context)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return {"middle": out_middle, "output": out_output} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 |