Spaces:
Paused
Paused
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import math | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.loaders import ( | |
| FromSingleFileMixin, | |
| IPAdapterMixin, | |
| StableDiffusionXLLoraLoaderMixin, | |
| TextualInversionLoaderMixin, | |
| ) | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.models.attention_processor import ( | |
| Attention, | |
| AttnProcessor, | |
| AttnProcessor2_0, | |
| XFormersAttnProcessor, | |
| ) | |
| from diffusers.models.lora import adjust_lora_scale_text_encoder | |
| from diffusers.schedulers import DDIMScheduler, DPMSolverMultistepScheduler | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| is_invisible_watermark_available, | |
| is_torch_xla_available, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from .pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput | |
| if is_invisible_watermark_available(): | |
| from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> import PIL | |
| >>> import requests | |
| >>> from io import BytesIO | |
| >>> from diffusers import LEditsPPPipelineStableDiffusionXL | |
| >>> pipe = LEditsPPPipelineStableDiffusionXL.from_pretrained( | |
| ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe = pipe.to("cuda") | |
| >>> def download_image(url): | |
| ... response = requests.get(url) | |
| ... return PIL.Image.open(BytesIO(response.content)).convert("RGB") | |
| >>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/tennis.jpg" | |
| >>> image = download_image(img_url) | |
| >>> _ = pipe.invert(image=image, num_inversion_steps=50, skip=0.2) | |
| >>> edited_image = pipe( | |
| ... editing_prompt=["tennis ball", "tomato"], | |
| ... reverse_editing_direction=[True, False], | |
| ... edit_guidance_scale=[5.0, 10.0], | |
| ... edit_threshold=[0.9, 0.85], | |
| ... ).images[0] | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsAttentionStore | |
| class LeditsAttentionStore: | |
| def get_empty_store(): | |
| return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []} | |
| def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False): | |
| # attn.shape = batch_size * head_size, seq_len query, seq_len_key | |
| if attn.shape[1] <= self.max_size: | |
| bs = 1 + int(PnP) + editing_prompts | |
| skip = 2 if PnP else 1 # skip PnP & unconditional | |
| attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3) | |
| source_batch_size = int(attn.shape[1] // bs) | |
| self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet) | |
| def forward(self, attn, is_cross: bool, place_in_unet: str): | |
| key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" | |
| self.step_store[key].append(attn) | |
| def between_steps(self, store_step=True): | |
| if store_step: | |
| if self.average: | |
| if len(self.attention_store) == 0: | |
| self.attention_store = self.step_store | |
| else: | |
| for key in self.attention_store: | |
| for i in range(len(self.attention_store[key])): | |
| self.attention_store[key][i] += self.step_store[key][i] | |
| else: | |
| if len(self.attention_store) == 0: | |
| self.attention_store = [self.step_store] | |
| else: | |
| self.attention_store.append(self.step_store) | |
| self.cur_step += 1 | |
| self.step_store = self.get_empty_store() | |
| def get_attention(self, step: int): | |
| if self.average: | |
| attention = { | |
| key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store | |
| } | |
| else: | |
| assert step is not None | |
| attention = self.attention_store[step] | |
| return attention | |
| def aggregate_attention( | |
| self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int | |
| ): | |
| out = [[] for x in range(self.batch_size)] | |
| if isinstance(res, int): | |
| num_pixels = res**2 | |
| resolution = (res, res) | |
| else: | |
| num_pixels = res[0] * res[1] | |
| resolution = res[:2] | |
| for location in from_where: | |
| for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: | |
| for batch, item in enumerate(bs_item): | |
| if item.shape[1] == num_pixels: | |
| cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select] | |
| out[batch].append(cross_maps) | |
| out = torch.stack([torch.cat(x, dim=0) for x in out]) | |
| # average over heads | |
| out = out.sum(1) / out.shape[1] | |
| return out | |
| def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None): | |
| self.step_store = self.get_empty_store() | |
| self.attention_store = [] | |
| self.cur_step = 0 | |
| self.average = average | |
| self.batch_size = batch_size | |
| if max_size is None: | |
| self.max_size = max_resolution**2 | |
| elif max_size is not None and max_resolution is None: | |
| self.max_size = max_size | |
| else: | |
| raise ValueError("Only allowed to set one of max_resolution or max_size") | |
| # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsGaussianSmoothing | |
| class LeditsGaussianSmoothing: | |
| def __init__(self, device): | |
| kernel_size = [3, 3] | |
| sigma = [0.5, 0.5] | |
| # The gaussian kernel is the product of the gaussian function of each dimension. | |
| kernel = 1 | |
| meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) | |
| for size, std, mgrid in zip(kernel_size, sigma, meshgrids): | |
| mean = (size - 1) / 2 | |
| kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) | |
| # Make sure sum of values in gaussian kernel equals 1. | |
| kernel = kernel / torch.sum(kernel) | |
| # Reshape to depthwise convolutional weight | |
| kernel = kernel.view(1, 1, *kernel.size()) | |
| kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1)) | |
| self.weight = kernel.to(device) | |
| def __call__(self, input): | |
| """ | |
| Arguments: | |
| Apply gaussian filter to input. | |
| input (torch.Tensor): Input to apply gaussian filter on. | |
| Returns: | |
| filtered (torch.Tensor): Filtered output. | |
| """ | |
| return F.conv2d(input, weight=self.weight.to(input.dtype)) | |
| # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEDITSCrossAttnProcessor | |
| class LEDITSCrossAttnProcessor: | |
| def __init__(self, attention_store, place_in_unet, pnp, editing_prompts): | |
| self.attnstore = attention_store | |
| self.place_in_unet = place_in_unet | |
| self.editing_prompts = editing_prompts | |
| self.pnp = pnp | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states, | |
| encoder_hidden_states, | |
| attention_mask=None, | |
| temb=None, | |
| ): | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| self.attnstore( | |
| attention_probs, | |
| is_cross=True, | |
| place_in_unet=self.place_in_unet, | |
| editing_prompts=self.editing_prompts, | |
| PnP=self.pnp, | |
| ) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class LEditsPPPipelineStableDiffusionXL( | |
| DiffusionPipeline, | |
| FromSingleFileMixin, | |
| StableDiffusionXLLoraLoaderMixin, | |
| TextualInversionLoaderMixin, | |
| IPAdapterMixin, | |
| ): | |
| """ | |
| Pipeline for textual image editing using LEDits++ with Stable Diffusion XL. | |
| This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionXLPipeline`]. Check the | |
| superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a | |
| particular device, etc.). | |
| In addition the pipeline inherits the following loading methods: | |
| - *LoRA*: [`LEditsPPPipelineStableDiffusionXL.load_lora_weights`] | |
| - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] | |
| as well as the following saving methods: | |
| - *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`] | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`~transformers.CLIPTextModel`]): | |
| Frozen text-encoder. Stable Diffusion XL uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]): | |
| Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | |
| specifically the | |
| [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) | |
| variant. | |
| tokenizer ([`~transformers.CLIPTokenizer`]): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_2 ([`~transformers.CLIPTokenizer`]): | |
| Second Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of | |
| [`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will | |
| automatically be set to [`DPMSolverMultistepScheduler`]. | |
| force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): | |
| Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of | |
| `stabilityai/stable-diffusion-xl-base-1-0`. | |
| add_watermarker (`bool`, *optional*): | |
| Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to | |
| watermark output images. If not defined, it will default to True if the package is installed, otherwise no | |
| watermarker will be used. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" | |
| _optional_components = [ | |
| "tokenizer", | |
| "tokenizer_2", | |
| "text_encoder", | |
| "text_encoder_2", | |
| "image_encoder", | |
| "feature_extractor", | |
| ] | |
| _callback_tensor_inputs = [ | |
| "latents", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| "add_text_embeds", | |
| "add_time_ids", | |
| "negative_pooled_prompt_embeds", | |
| "negative_add_time_ids", | |
| ] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| text_encoder_2: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| tokenizer_2: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: Union[DPMSolverMultistepScheduler, DDIMScheduler], | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| feature_extractor: CLIPImageProcessor = None, | |
| force_zeros_for_empty_prompt: bool = True, | |
| add_watermarker: Optional[bool] = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| unet=unet, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler): | |
| self.scheduler = DPMSolverMultistepScheduler.from_config( | |
| scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2 | |
| ) | |
| logger.warning( | |
| "This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. " | |
| "The scheduler has been changed to DPMSolverMultistepScheduler." | |
| ) | |
| self.default_sample_size = self.unet.config.sample_size | |
| add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() | |
| if add_watermarker: | |
| self.watermark = StableDiffusionXLWatermarker() | |
| else: | |
| self.watermark = None | |
| self.inversion_steps = None | |
| def encode_prompt( | |
| self, | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| negative_prompt: Optional[str] = None, | |
| negative_prompt_2: Optional[str] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| lora_scale: Optional[float] = None, | |
| clip_skip: Optional[int] = None, | |
| enable_edit_guidance: bool = True, | |
| editing_prompt: Optional[str] = None, | |
| editing_prompt_embeds: Optional[torch.Tensor] = None, | |
| editing_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| avg_diff=None, # [0] -> text encoder 1,[1] ->text encoder 2 | |
| avg_diff_2nd=None, # text encoder 1,2 | |
| correlation_weight_factor=0.7, | |
| scale=2, | |
| scale_2nd=2, | |
| ) -> object: | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| enable_edit_guidance (`bool`): | |
| Whether to guide towards an editing prompt or not. | |
| editing_prompt (`str` or `List[str]`, *optional*): | |
| Editing prompt(s) to be encoded. If not defined and 'enable_edit_guidance' is True, one has to pass | |
| `editing_prompt_embeds` instead. | |
| editing_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided and 'enable_edit_guidance' is True, editing_prompt_embeds will be generated from | |
| `editing_prompt` input argument. | |
| editing_pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated edit pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled editing_pooled_prompt_embeds will be generated from `editing_prompt` | |
| input argument. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None: | |
| if not USE_PEFT_BACKEND: | |
| adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
| else: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if not USE_PEFT_BACKEND: | |
| adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) | |
| else: | |
| scale_lora_layers(self.text_encoder_2, lora_scale) | |
| batch_size = self.batch_size | |
| # Define tokenizers and text encoders | |
| tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | |
| text_encoders = ( | |
| [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
| ) | |
| num_edit_tokens = 0 | |
| # get unconditional embeddings for classifier free guidance | |
| zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | |
| if negative_prompt_embeds is None: | |
| negative_prompt = negative_prompt or "" | |
| negative_prompt_2 = negative_prompt_2 or negative_prompt | |
| # normalize str to list | |
| negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
| negative_prompt_2 = ( | |
| batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 | |
| ) | |
| uncond_tokens: List[str] | |
| if batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but image inversion " | |
| f" has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of the input images." | |
| ) | |
| else: | |
| uncond_tokens = [negative_prompt, negative_prompt_2] | |
| j=0 | |
| negative_prompt_embeds_list = [] | |
| for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) | |
| uncond_input = tokenizer( | |
| negative_prompt, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| toks = uncond_input.input_ids | |
| negative_prompt_embeds = text_encoder( | |
| uncond_input.input_ids.to(device), | |
| output_hidden_states=True, | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
| negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
| if avg_diff is not None: | |
| # scale=3 | |
| normed_prompt_embeds = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1, keepdim=True) | |
| sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T | |
| if j == 0: | |
| weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768) | |
| standard_weights = torch.ones_like(weights) | |
| weights = standard_weights + (weights - standard_weights) * correlation_weight_factor | |
| edit_concepts_embeds = negative_prompt_embeds + ( | |
| weights * avg_diff[0][None, :].repeat(1, tokenizer.model_max_length, 1) * scale) | |
| if avg_diff_2nd is not None: | |
| edit_concepts_embeds += (weights * avg_diff_2nd[0][None, :].repeat(1, | |
| self.pipe.tokenizer.model_max_length, | |
| 1) * scale_2nd) | |
| else: | |
| weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280) | |
| standard_weights = torch.ones_like(weights) | |
| weights = standard_weights + (weights - standard_weights) * correlation_weight_factor | |
| edit_concepts_embeds = negative_prompt_embeds + ( | |
| weights * avg_diff[1][None, :].repeat(1, tokenizer.model_max_length, 1) * scale) | |
| if avg_diff_2nd is not None: | |
| edit_concepts_embeds += (weights * avg_diff_2nd[1][None, :].repeat(1, | |
| self.pipe.tokenizer_2.model_max_length, | |
| 1) * scale_2nd) | |
| negative_prompt_embeds_list.append(negative_prompt_embeds) | |
| j+=1 | |
| negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
| if zero_out_negative_prompt: | |
| negative_prompt_embeds = torch.zeros_like(negative_prompt_embeds) | |
| negative_pooled_prompt_embeds = torch.zeros_like(negative_pooled_prompt_embeds) | |
| if enable_edit_guidance and editing_prompt_embeds is None: | |
| editing_prompt_2 = editing_prompt | |
| editing_prompts = [editing_prompt, editing_prompt_2] | |
| edit_prompt_embeds_list = [] | |
| i = 0 | |
| for editing_prompt, tokenizer, text_encoder in zip(editing_prompts, tokenizers, text_encoders): | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| editing_prompt = self.maybe_convert_prompt(editing_prompt, tokenizer) | |
| max_length = negative_prompt_embeds.shape[1] | |
| edit_concepts_input = tokenizer( | |
| # [x for item in editing_prompt for x in repeat(item, batch_size)], | |
| editing_prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| return_length=True, | |
| ) | |
| num_edit_tokens = edit_concepts_input.length - 2 | |
| toks = edit_concepts_input.input_ids | |
| edit_concepts_embeds = text_encoder( | |
| edit_concepts_input.input_ids.to(device), | |
| output_hidden_states=True, | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| editing_pooled_prompt_embeds = edit_concepts_embeds[0] | |
| if clip_skip is None: | |
| edit_concepts_embeds = edit_concepts_embeds.hidden_states[-2] | |
| else: | |
| # "2" because SDXL always indexes from the penultimate layer. | |
| edit_concepts_embeds = edit_concepts_embeds.hidden_states[-(clip_skip + 2)] | |
| if avg_diff is not None: | |
| normed_prompt_embeds = edit_concepts_embeds / edit_concepts_embeds.norm(dim=-1, keepdim=True) | |
| sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T | |
| if i == 0: | |
| weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768) | |
| standard_weights = torch.ones_like(weights) | |
| weights = standard_weights + (weights - standard_weights) * correlation_weight_factor | |
| edit_concepts_embeds = edit_concepts_embeds + ( | |
| weights * avg_diff[0][None, :].repeat(1, tokenizer.model_max_length, 1) * scale) | |
| if avg_diff_2nd is not None: | |
| edit_concepts_embeds += (weights * avg_diff_2nd[0][None, :].repeat(1, | |
| self.pipe.tokenizer.model_max_length, | |
| 1) * scale_2nd) | |
| else: | |
| weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280) | |
| standard_weights = torch.ones_like(weights) | |
| weights = standard_weights + (weights - standard_weights) * correlation_weight_factor | |
| edit_concepts_embeds = edit_concepts_embeds + ( | |
| weights * avg_diff[1][None, :].repeat(1, tokenizer.model_max_length, 1) * scale) | |
| if avg_diff_2nd is not None: | |
| edit_concepts_embeds += (weights * avg_diff_2nd[1][None, :].repeat(1, | |
| self.pipe.tokenizer_2.model_max_length, | |
| 1) * scale_2nd) | |
| edit_prompt_embeds_list.append(edit_concepts_embeds) | |
| i+=1 | |
| edit_concepts_embeds = torch.concat(edit_prompt_embeds_list, dim=-1) | |
| elif not enable_edit_guidance: | |
| edit_concepts_embeds = None | |
| editing_pooled_prompt_embeds = None | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| bs_embed, seq_len, _ = negative_prompt_embeds.shape | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| if enable_edit_guidance: | |
| bs_embed_edit, seq_len, _ = edit_concepts_embeds.shape | |
| edit_concepts_embeds = edit_concepts_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| edit_concepts_embeds = edit_concepts_embeds.repeat(1, num_images_per_prompt, 1) | |
| edit_concepts_embeds = edit_concepts_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1) | |
| negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| if enable_edit_guidance: | |
| editing_pooled_prompt_embeds = editing_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
| bs_embed_edit * num_images_per_prompt, -1 | |
| ) | |
| if self.text_encoder is not None: | |
| if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder_2, lora_scale) | |
| return ( | |
| negative_prompt_embeds, | |
| edit_concepts_embeds, | |
| negative_pooled_prompt_embeds, | |
| editing_pooled_prompt_embeds, | |
| num_edit_tokens, | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, eta, generator=None): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| negative_prompt=None, | |
| negative_prompt_2=None, | |
| negative_prompt_embeds=None, | |
| negative_pooled_prompt_embeds=None, | |
| ): | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
| ) | |
| # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents(self, device, latents): | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def _get_add_time_ids( | |
| self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None | |
| ): | |
| add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
| passed_add_embed_dim = ( | |
| self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim | |
| ) | |
| expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | |
| if expected_add_embed_dim != passed_add_embed_dim: | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
| ) | |
| add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
| return add_time_ids | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae | |
| def upcast_vae(self): | |
| dtype = self.vae.dtype | |
| self.vae.to(dtype=torch.float32) | |
| use_torch_2_0_or_xformers = isinstance( | |
| self.vae.decoder.mid_block.attentions[0].processor, | |
| ( | |
| AttnProcessor2_0, | |
| XFormersAttnProcessor, | |
| ), | |
| ) | |
| # if xformers or torch_2_0 is used attention block does not need | |
| # to be in float32 which can save lots of memory | |
| if use_torch_2_0_or_xformers: | |
| self.vae.post_quant_conv.to(dtype) | |
| self.vae.decoder.conv_in.to(dtype) | |
| self.vae.decoder.mid_block.to(dtype) | |
| # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding | |
| def get_guidance_scale_embedding( | |
| self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 | |
| ) -> torch.Tensor: | |
| """ | |
| See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
| Args: | |
| w (`torch.Tensor`): | |
| Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. | |
| embedding_dim (`int`, *optional*, defaults to 512): | |
| Dimension of the embeddings to generate. | |
| dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): | |
| Data type of the generated embeddings. | |
| Returns: | |
| `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. | |
| """ | |
| assert len(w.shape) == 1 | |
| w = w * 1000.0 | |
| half_dim = embedding_dim // 2 | |
| emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
| emb = w.to(dtype)[:, None] * emb[None, :] | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
| if embedding_dim % 2 == 1: # zero pad | |
| emb = torch.nn.functional.pad(emb, (0, 1)) | |
| assert emb.shape == (w.shape[0], embedding_dim) | |
| return emb | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def guidance_rescale(self): | |
| return self._guidance_rescale | |
| def clip_skip(self): | |
| return self._clip_skip | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | |
| def cross_attention_kwargs(self): | |
| return self._cross_attention_kwargs | |
| def denoising_end(self): | |
| return self._denoising_end | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.prepare_unet | |
| def prepare_unet(self, attention_store, PnP: bool = False): | |
| attn_procs = {} | |
| for name in self.unet.attn_processors.keys(): | |
| if name.startswith("mid_block"): | |
| place_in_unet = "mid" | |
| elif name.startswith("up_blocks"): | |
| place_in_unet = "up" | |
| elif name.startswith("down_blocks"): | |
| place_in_unet = "down" | |
| else: | |
| continue | |
| if "attn2" in name and place_in_unet != "mid": | |
| attn_procs[name] = LEDITSCrossAttnProcessor( | |
| attention_store=attention_store, | |
| place_in_unet=place_in_unet, | |
| pnp=PnP, | |
| editing_prompts=self.enabled_editing_prompts, | |
| ) | |
| else: | |
| attn_procs[name] = AttnProcessor() | |
| self.unet.set_attn_processor(attn_procs) | |
| def __call__( | |
| self, | |
| denoising_end: Optional[float] = None, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Optional[Tuple[int, int]] = None, | |
| editing_prompt: Optional[Union[str, List[str]]] = None, | |
| editing_prompt_embeddings: Optional[torch.Tensor] = None, | |
| editing_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| reverse_editing_direction: Optional[Union[bool, List[bool]]] = False, | |
| edit_guidance_scale: Optional[Union[float, List[float]]] = 5, | |
| edit_warmup_steps: Optional[Union[int, List[int]]] = 0, | |
| edit_cooldown_steps: Optional[Union[int, List[int]]] = None, | |
| edit_threshold: Optional[Union[float, List[float]]] = 0.9, | |
| sem_guidance: Optional[List[torch.Tensor]] = None, | |
| use_cross_attn_mask: bool = False, | |
| use_intersect_mask: bool = False, | |
| user_mask: Optional[torch.Tensor] = None, | |
| attn_store_steps: Optional[List[int]] = [], | |
| store_averaged_over_steps: bool = True, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| avg_diff=None, # [0] -> text encoder 1,[1] ->text encoder 2 | |
| avg_diff_2nd=None, # text encoder 1,2 | |
| correlation_weight_factor=0.7, | |
| scale=2, | |
| scale_2nd=2, | |
| correlation_weight_factor = 0.7, | |
| init_latents: [torch.Tensor] = None, | |
| zs: [torch.Tensor] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| The call function to the pipeline for editing. The | |
| [`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusionXL.invert`] method has to be called beforehand. Edits | |
| will always be performed for the last inverted image(s). | |
| Args: | |
| denoising_end (`float`, *optional*): | |
| When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | |
| completed before it is intentionally prematurely terminated. As a result, the returned sample will | |
| still retain a substantial amount of noise as determined by the discrete timesteps selected by the | |
| scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | |
| "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| ip_adapter_image: (`PipelineImageInput`, *optional*): | |
| Optional image input to work with IP Adapters. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
| of a plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| guidance_rescale (`float`, *optional*, defaults to 0.7): | |
| Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
| Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of | |
| [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
| Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
| crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
| `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
| `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
| `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
| For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
| not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in | |
| section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| editing_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. The image is reconstructed by setting | |
| `editing_prompt = None`. Guidance direction of prompt should be specified via | |
| `reverse_editing_direction`. | |
| editing_prompt_embeddings (`torch.Tensor`, *optional*): | |
| Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input argument. | |
| editing_pooled_prompt_embeddings (`torch.Tensor`, *optional*): | |
| Pre-generated pooled edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input | |
| argument. | |
| reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`): | |
| Whether the corresponding prompt in `editing_prompt` should be increased or decreased. | |
| edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5): | |
| Guidance scale for guiding the image generation. If provided as list values should correspond to | |
| `editing_prompt`. `edit_guidance_scale` is defined as `s_e` of equation 12 of [LEDITS++ | |
| Paper](https://arxiv.org/abs/2301.12247). | |
| edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10): | |
| Number of diffusion steps (for each prompt) for which guidance is not applied. | |
| edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`): | |
| Number of diffusion steps (for each prompt) after which guidance is no longer applied. | |
| edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9): | |
| Masking threshold of guidance. Threshold should be proportional to the image region that is modified. | |
| 'edit_threshold' is defined as 'λ' of equation 12 of [LEDITS++ | |
| Paper](https://arxiv.org/abs/2301.12247). | |
| sem_guidance (`List[torch.Tensor]`, *optional*): | |
| List of pre-generated guidance vectors to be applied at generation. Length of the list has to | |
| correspond to `num_inference_steps`. | |
| use_cross_attn_mask: | |
| Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask | |
| is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of [LEDITS++ | |
| paper](https://arxiv.org/pdf/2311.16711.pdf). | |
| use_intersect_mask: | |
| Whether the masking term is calculated as intersection of cross-attention masks and masks derived from | |
| the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise estimate | |
| are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf). | |
| user_mask: | |
| User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s | |
| implicit masks do not meet user preferences. | |
| attn_store_steps: | |
| Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes. | |
| store_averaged_over_steps: | |
| Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps. If | |
| False, attention maps for each step are stores separately. Just for visualization purposes. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| Examples: | |
| Returns: | |
| [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When | |
| returning a tuple, the first element is a list with the generated images. | |
| """ | |
| if self.inversion_steps is None: | |
| raise ValueError( | |
| "You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)." | |
| ) | |
| eta = self.eta | |
| num_images_per_prompt = 1 | |
| #latents = self.init_latents | |
| latents = init_latents | |
| #zs = self.zs | |
| self.scheduler.set_timesteps(len(self.scheduler.timesteps)) | |
| if use_intersect_mask: | |
| use_cross_attn_mask = True | |
| if use_cross_attn_mask: | |
| self.smoothing = LeditsGaussianSmoothing(self.device) | |
| if user_mask is not None: | |
| user_mask = user_mask.to(self.device) | |
| # TODO: Check inputs | |
| # 1. Check inputs. Raise error if not correct | |
| # self.check_inputs( | |
| # callback_steps, | |
| # negative_prompt, | |
| # negative_prompt_2, | |
| # prompt_embeds, | |
| # negative_prompt_embeds, | |
| # pooled_prompt_embeds, | |
| # negative_pooled_prompt_embeds, | |
| # ) | |
| self._guidance_rescale = guidance_rescale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| self._denoising_end = denoising_end | |
| # 2. Define call parameters | |
| batch_size = self.batch_size | |
| device = self._execution_device | |
| if editing_prompt: | |
| enable_edit_guidance = True | |
| if isinstance(editing_prompt, str): | |
| editing_prompt = [editing_prompt] | |
| self.enabled_editing_prompts = len(editing_prompt) | |
| elif editing_prompt_embeddings is not None: | |
| enable_edit_guidance = True | |
| self.enabled_editing_prompts = editing_prompt_embeddings.shape[0] | |
| else: | |
| self.enabled_editing_prompts = 0 | |
| enable_edit_guidance = False | |
| print("negative_prompt", negative_prompt) | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| edit_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| pooled_edit_embeds, | |
| num_edit_tokens, | |
| ) = self.encode_prompt( | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=self.clip_skip, | |
| enable_edit_guidance=enable_edit_guidance, | |
| editing_prompt=editing_prompt, | |
| editing_prompt_embeds=editing_prompt_embeddings, | |
| editing_pooled_prompt_embeds=editing_pooled_prompt_embeds, | |
| avg_diff = avg_diff, | |
| avg_diff_2nd = avg_diff_2nd, | |
| correlation_weight_factor = correlation_weight_factor, | |
| scale=scale, | |
| scale_2nd=scale_2nd | |
| ) | |
| # 4. Prepare timesteps | |
| # self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.inversion_steps | |
| timesteps = inversion_steps | |
| t_to_idx = {int(v): k for k, v in enumerate(timesteps)} | |
| if use_cross_attn_mask: | |
| self.attention_store = LeditsAttentionStore( | |
| average=store_averaged_over_steps, | |
| batch_size=batch_size, | |
| max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0), | |
| max_resolution=None, | |
| ) | |
| self.prepare_unet(self.attention_store) | |
| resolution = latents.shape[-2:] | |
| att_res = (int(resolution[0] / 4), int(resolution[1] / 4)) | |
| # 5. Prepare latent variables | |
| latents = self.prepare_latents(device=device, latents=latents) | |
| # 6. Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(eta) | |
| if self.text_encoder_2 is None: | |
| text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1]) | |
| else: | |
| text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
| # 7. Prepare added time ids & embeddings | |
| add_text_embeds = negative_pooled_prompt_embeds | |
| add_time_ids = self._get_add_time_ids( | |
| self.size, | |
| crops_coords_top_left, | |
| self.size, | |
| dtype=negative_pooled_prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| if enable_edit_guidance: | |
| prompt_embeds = torch.cat([prompt_embeds, edit_prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat([add_text_embeds, pooled_edit_embeds], dim=0) | |
| edit_concepts_time_ids = add_time_ids.repeat(edit_prompt_embeds.shape[0], 1) | |
| add_time_ids = torch.cat([add_time_ids, edit_concepts_time_ids], dim=0) | |
| self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt | |
| prompt_embeds = prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
| if ip_adapter_image is not None: | |
| # TODO: fix image encoding | |
| image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt) | |
| if self.do_classifier_free_guidance: | |
| image_embeds = torch.cat([negative_image_embeds, image_embeds]) | |
| image_embeds = image_embeds.to(device) | |
| # 8. Denoising loop | |
| self.sem_guidance = None | |
| self.activation_mask = None | |
| if ( | |
| self.denoising_end is not None | |
| and isinstance(self.denoising_end, float) | |
| and self.denoising_end > 0 | |
| and self.denoising_end < 1 | |
| ): | |
| discrete_timestep_cutoff = int( | |
| round( | |
| self.scheduler.config.num_train_timesteps | |
| - (self.denoising_end * self.scheduler.config.num_train_timesteps) | |
| ) | |
| ) | |
| num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
| timesteps = timesteps[:num_inference_steps] | |
| # 9. Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| if self.unet.config.time_cond_proj_dim is not None: | |
| guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
| timestep_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=self._num_timesteps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts)) | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
| if ip_adapter_image is not None: | |
| added_cond_kwargs["image_embeds"] = image_embeds | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) # [b,4, 64, 64] | |
| noise_pred_uncond = noise_pred_out[0] | |
| noise_pred_edit_concepts = noise_pred_out[1:] | |
| noise_guidance_edit = torch.zeros( | |
| noise_pred_uncond.shape, | |
| device=self.device, | |
| dtype=noise_pred_uncond.dtype, | |
| ) | |
| if sem_guidance is not None and len(sem_guidance) > i: | |
| noise_guidance_edit += sem_guidance[i].to(self.device) | |
| elif enable_edit_guidance: | |
| if self.activation_mask is None: | |
| self.activation_mask = torch.zeros( | |
| (len(timesteps), self.enabled_editing_prompts, *noise_pred_edit_concepts[0].shape) | |
| ) | |
| if self.sem_guidance is None: | |
| self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape)) | |
| # noise_guidance_edit = torch.zeros_like(noise_guidance) | |
| for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts): | |
| if isinstance(edit_warmup_steps, list): | |
| edit_warmup_steps_c = edit_warmup_steps[c] | |
| else: | |
| edit_warmup_steps_c = edit_warmup_steps | |
| if i < edit_warmup_steps_c: | |
| continue | |
| if isinstance(edit_guidance_scale, list): | |
| edit_guidance_scale_c = edit_guidance_scale[c] | |
| else: | |
| edit_guidance_scale_c = edit_guidance_scale | |
| if isinstance(edit_threshold, list): | |
| edit_threshold_c = edit_threshold[c] | |
| else: | |
| edit_threshold_c = edit_threshold | |
| if isinstance(reverse_editing_direction, list): | |
| reverse_editing_direction_c = reverse_editing_direction[c] | |
| else: | |
| reverse_editing_direction_c = reverse_editing_direction | |
| if isinstance(edit_cooldown_steps, list): | |
| edit_cooldown_steps_c = edit_cooldown_steps[c] | |
| elif edit_cooldown_steps is None: | |
| edit_cooldown_steps_c = i + 1 | |
| else: | |
| edit_cooldown_steps_c = edit_cooldown_steps | |
| if i >= edit_cooldown_steps_c: | |
| continue | |
| noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond | |
| if reverse_editing_direction_c: | |
| noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1 | |
| noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c | |
| if user_mask is not None: | |
| noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask | |
| if use_cross_attn_mask: | |
| out = self.attention_store.aggregate_attention( | |
| attention_maps=self.attention_store.step_store, | |
| prompts=self.text_cross_attention_maps, | |
| res=att_res, | |
| from_where=["up", "down"], | |
| is_cross=True, | |
| select=self.text_cross_attention_maps.index(editing_prompt[c]), | |
| ) | |
| attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]] # 0 -> startoftext | |
| # average over all tokens | |
| if attn_map.shape[3] != num_edit_tokens[c]: | |
| raise ValueError( | |
| f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!" | |
| ) | |
| attn_map = torch.sum(attn_map, dim=3) | |
| # gaussian_smoothing | |
| attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect") | |
| attn_map = self.smoothing(attn_map).squeeze(1) | |
| # torch.quantile function expects float32 | |
| if attn_map.dtype == torch.float32: | |
| tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1) | |
| else: | |
| tmp = torch.quantile( | |
| attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1 | |
| ).to(attn_map.dtype) | |
| attn_mask = torch.where( | |
| attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0 | |
| ) | |
| # resolution must match latent space dimension | |
| attn_mask = F.interpolate( | |
| attn_mask.unsqueeze(1), | |
| noise_guidance_edit_tmp.shape[-2:], # 64,64 | |
| ).repeat(1, 4, 1, 1) | |
| self.activation_mask[i, c] = attn_mask.detach().cpu() | |
| if not use_intersect_mask: | |
| noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask | |
| if use_intersect_mask: | |
| noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) | |
| noise_guidance_edit_tmp_quantile = torch.sum( | |
| noise_guidance_edit_tmp_quantile, dim=1, keepdim=True | |
| ) | |
| noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat( | |
| 1, self.unet.config.in_channels, 1, 1 | |
| ) | |
| # torch.quantile function expects float32 | |
| if noise_guidance_edit_tmp_quantile.dtype == torch.float32: | |
| tmp = torch.quantile( | |
| noise_guidance_edit_tmp_quantile.flatten(start_dim=2), | |
| edit_threshold_c, | |
| dim=2, | |
| keepdim=False, | |
| ) | |
| else: | |
| tmp = torch.quantile( | |
| noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), | |
| edit_threshold_c, | |
| dim=2, | |
| keepdim=False, | |
| ).to(noise_guidance_edit_tmp_quantile.dtype) | |
| intersect_mask = ( | |
| torch.where( | |
| noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], | |
| torch.ones_like(noise_guidance_edit_tmp), | |
| torch.zeros_like(noise_guidance_edit_tmp), | |
| ) | |
| * attn_mask | |
| ) | |
| self.activation_mask[i, c] = intersect_mask.detach().cpu() | |
| noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask | |
| elif not use_cross_attn_mask: | |
| # calculate quantile | |
| noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) | |
| noise_guidance_edit_tmp_quantile = torch.sum( | |
| noise_guidance_edit_tmp_quantile, dim=1, keepdim=True | |
| ) | |
| noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1) | |
| # torch.quantile function expects float32 | |
| if noise_guidance_edit_tmp_quantile.dtype == torch.float32: | |
| tmp = torch.quantile( | |
| noise_guidance_edit_tmp_quantile.flatten(start_dim=2), | |
| edit_threshold_c, | |
| dim=2, | |
| keepdim=False, | |
| ) | |
| else: | |
| tmp = torch.quantile( | |
| noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), | |
| edit_threshold_c, | |
| dim=2, | |
| keepdim=False, | |
| ).to(noise_guidance_edit_tmp_quantile.dtype) | |
| self.activation_mask[i, c] = ( | |
| torch.where( | |
| noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], | |
| torch.ones_like(noise_guidance_edit_tmp), | |
| torch.zeros_like(noise_guidance_edit_tmp), | |
| ) | |
| .detach() | |
| .cpu() | |
| ) | |
| noise_guidance_edit_tmp = torch.where( | |
| noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], | |
| noise_guidance_edit_tmp, | |
| torch.zeros_like(noise_guidance_edit_tmp), | |
| ) | |
| noise_guidance_edit += noise_guidance_edit_tmp | |
| self.sem_guidance[i] = noise_guidance_edit.detach().cpu() | |
| noise_pred = noise_pred_uncond + noise_guidance_edit | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| if enable_edit_guidance and self.guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg( | |
| noise_pred, | |
| noise_pred_edit_concepts.mean(dim=0, keepdim=False), | |
| guidance_rescale=self.guidance_rescale, | |
| ) | |
| idx = t_to_idx[int(t)] | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs, return_dict=False | |
| )[0] | |
| # step callback | |
| if use_cross_attn_mask: | |
| store_step = i in attn_store_steps | |
| self.attention_store.between_steps(store_step) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) | |
| negative_pooled_prompt_embeds = callback_outputs.pop( | |
| "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds | |
| ) | |
| add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) | |
| # negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > 0 and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if not output_type == "latent": | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
| if needs_upcasting: | |
| self.upcast_vae() | |
| latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| # cast back to fp16 if needed | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float16) | |
| else: | |
| image = latents | |
| if not output_type == "latent": | |
| # apply watermark if available | |
| if self.watermark is not None: | |
| image = self.watermark.apply_watermark(image) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=None) | |
| # Modified from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.encode_image | |
| def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None): | |
| image = self.image_processor.preprocess( | |
| image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords | |
| ) | |
| resized = self.image_processor.postprocess(image=image, output_type="pil") | |
| if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5: | |
| logger.warning( | |
| "Your input images far exceed the default resolution of the underlying diffusion model. " | |
| "The output images may contain severe artifacts! " | |
| "Consider down-sampling the input using the `height` and `width` parameters" | |
| ) | |
| image = image.to(self.device, dtype=dtype) | |
| needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
| if needs_upcasting: | |
| image = image.float() | |
| self.upcast_vae() | |
| x0 = self.vae.encode(image).latent_dist.mode() | |
| x0 = x0.to(dtype) | |
| # cast back to fp16 if needed | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float16) | |
| x0 = self.vae.config.scaling_factor * x0 | |
| return x0, resized | |
| def invert( | |
| self, | |
| image: PipelineImageInput, | |
| source_prompt: str = "", | |
| source_guidance_scale=3.5, | |
| negative_prompt: str = None, | |
| negative_prompt_2: str = None, | |
| num_inversion_steps: int = 50, | |
| skip: float = 0.15, | |
| generator: Optional[torch.Generator] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| num_zero_noise_steps: int = 3, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| ): | |
| r""" | |
| The function to the pipeline for image inversion as described by the [LEDITS++ | |
| Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the | |
| inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead. | |
| Args: | |
| image (`PipelineImageInput`): | |
| Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect | |
| ratio. | |
| source_prompt (`str`, defaults to `""`): | |
| Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled | |
| if the `source_prompt` is `""`. | |
| source_guidance_scale (`float`, defaults to `3.5`): | |
| Strength of guidance during inversion. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
| num_inversion_steps (`int`, defaults to `50`): | |
| Number of total performed inversion steps after discarding the initial `skip` steps. | |
| skip (`float`, defaults to `0.15`): | |
| Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values | |
| will lead to stronger changes to the input image. `skip` has to be between `0` and `1`. | |
| generator (`torch.Generator`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make inversion | |
| deterministic. | |
| crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
| `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
| `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
| `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| num_zero_noise_steps (`int`, defaults to `3`): | |
| Number of final diffusion steps that will not renoise the current image. If no steps are set to zero | |
| SD-XL in combination with [`DPMSolverMultistepScheduler`] will produce noise artifacts. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| Returns: | |
| [`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]: Output will contain the resized input image(s) | |
| and respective VAE reconstruction(s). | |
| """ | |
| # Reset attn processor, we do not want to store attn maps during inversion | |
| self.unet.set_attn_processor(AttnProcessor()) | |
| self.eta = 1.0 | |
| self.scheduler.config.timestep_spacing = "leading" | |
| self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip))) | |
| self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:] | |
| timesteps = self.inversion_steps | |
| num_images_per_prompt = 1 | |
| device = self._execution_device | |
| # 0. Ensure that only uncond embedding is used if prompt = "" | |
| if source_prompt == "": | |
| # noise pred should only be noise_pred_uncond | |
| source_guidance_scale = 0.0 | |
| do_classifier_free_guidance = False | |
| else: | |
| do_classifier_free_guidance = source_guidance_scale > 1.0 | |
| # 1. prepare image | |
| x0, resized = self.encode_image(image, dtype=self.text_encoder_2.dtype) | |
| width = x0.shape[2] * self.vae_scale_factor | |
| height = x0.shape[3] * self.vae_scale_factor | |
| self.size = (height, width) | |
| self.batch_size = x0.shape[0] | |
| # 2. get embeddings | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| if isinstance(source_prompt, str): | |
| source_prompt = [source_prompt] * self.batch_size | |
| ( | |
| negative_prompt_embeds, | |
| prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| edit_pooled_prompt_embeds, | |
| _, | |
| ) = self.encode_prompt( | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| editing_prompt=source_prompt, | |
| lora_scale=text_encoder_lora_scale, | |
| enable_edit_guidance=do_classifier_free_guidance, | |
| ) | |
| if self.text_encoder_2 is None: | |
| text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1]) | |
| else: | |
| text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
| # 3. Prepare added time ids & embeddings | |
| add_text_embeds = negative_pooled_prompt_embeds | |
| add_time_ids = self._get_add_time_ids( | |
| self.size, | |
| crops_coords_top_left, | |
| self.size, | |
| dtype=negative_prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat([add_text_embeds, edit_pooled_prompt_embeds], dim=0) | |
| add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) | |
| negative_prompt_embeds = negative_prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device).repeat(self.batch_size * num_images_per_prompt, 1) | |
| # autoencoder reconstruction | |
| if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: | |
| self.upcast_vae() | |
| x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| image_rec = self.vae.decode( | |
| x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator | |
| )[0] | |
| elif self.vae.config.force_upcast: | |
| x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| image_rec = self.vae.decode( | |
| x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator | |
| )[0] | |
| else: | |
| image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] | |
| image_rec = self.image_processor.postprocess(image_rec, output_type="pil") | |
| # 5. find zs and xts | |
| variance_noise_shape = (num_inversion_steps, *x0.shape) | |
| # intermediate latents | |
| t_to_idx = {int(v): k for k, v in enumerate(timesteps)} | |
| xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype) | |
| for t in reversed(timesteps): | |
| idx = num_inversion_steps - t_to_idx[int(t)] - 1 | |
| noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype) | |
| xts[idx] = self.scheduler.add_noise(x0, noise, t.unsqueeze(0)) | |
| xts = torch.cat([x0.unsqueeze(0), xts], dim=0) | |
| # noise maps | |
| zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype) | |
| self.scheduler.set_timesteps(len(self.scheduler.timesteps)) | |
| for t in self.progress_bar(timesteps): | |
| idx = num_inversion_steps - t_to_idx[int(t)] - 1 | |
| # 1. predict noise residual | |
| xt = xts[idx + 1] | |
| latent_model_input = torch.cat([xt] * 2) if do_classifier_free_guidance else xt | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # 2. perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_out = noise_pred.chunk(2) | |
| noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1] | |
| noise_pred = noise_pred_uncond + source_guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| xtm1 = xts[idx] | |
| z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta) | |
| zs[idx] = z | |
| # correction to avoid error accumulation | |
| xts[idx] = xtm1_corrected | |
| self.init_latents = xts[-1] | |
| zs = zs.flip(0) | |
| if num_zero_noise_steps > 0: | |
| zs[-num_zero_noise_steps:] = torch.zeros_like(zs[-num_zero_noise_steps:]) | |
| self.zs = zs | |
| #return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec) | |
| return xts[-1], zs | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.rescale_noise_cfg | |
| def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
| """ | |
| Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
| """ | |
| std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
| std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
| # rescale the results from guidance (fixes overexposure) | |
| noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
| # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
| noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
| return noise_cfg | |
| # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_ddim | |
| def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta): | |
| # 1. get previous step value (=t-1) | |
| prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps | |
| # 2. compute alphas, betas | |
| alpha_prod_t = scheduler.alphas_cumprod[timestep] | |
| alpha_prod_t_prev = ( | |
| scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod | |
| ) | |
| beta_prod_t = 1 - alpha_prod_t | |
| # 3. compute predicted original sample from predicted noise also called | |
| # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) | |
| # 4. Clip "predicted x_0" | |
| if scheduler.config.clip_sample: | |
| pred_original_sample = torch.clamp(pred_original_sample, -1, 1) | |
| # 5. compute variance: "sigma_t(η)" -> see formula (16) | |
| # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) | |
| variance = scheduler._get_variance(timestep, prev_timestep) | |
| std_dev_t = eta * variance ** (0.5) | |
| # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred | |
| # modifed so that updated xtm1 is returned as well (to avoid error accumulation) | |
| mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | |
| if variance > 0.0: | |
| noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta) | |
| else: | |
| noise = torch.tensor([0.0]).to(latents.device) | |
| return noise, mu_xt + (eta * variance**0.5) * noise | |
| # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_sde_dpm_pp_2nd | |
| def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta): | |
| def first_order_update(model_output, sample): # timestep, prev_timestep, sample): | |
| sigma_t, sigma_s = scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index] | |
| alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t) | |
| alpha_s, sigma_s = scheduler._sigma_to_alpha_sigma_t(sigma_s) | |
| lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
| lambda_s = torch.log(alpha_s) - torch.log(sigma_s) | |
| h = lambda_t - lambda_s | |
| mu_xt = (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output | |
| mu_xt = scheduler.dpm_solver_first_order_update( | |
| model_output=model_output, sample=sample, noise=torch.zeros_like(sample) | |
| ) | |
| sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) | |
| if sigma > 0.0: | |
| noise = (prev_latents - mu_xt) / sigma | |
| else: | |
| noise = torch.tensor([0.0]).to(sample.device) | |
| prev_sample = mu_xt + sigma * noise | |
| return noise, prev_sample | |
| def second_order_update(model_output_list, sample): # timestep_list, prev_timestep, sample): | |
| sigma_t, sigma_s0, sigma_s1 = ( | |
| scheduler.sigmas[scheduler.step_index + 1], | |
| scheduler.sigmas[scheduler.step_index], | |
| scheduler.sigmas[scheduler.step_index - 1], | |
| ) | |
| alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t) | |
| alpha_s0, sigma_s0 = scheduler._sigma_to_alpha_sigma_t(sigma_s0) | |
| alpha_s1, sigma_s1 = scheduler._sigma_to_alpha_sigma_t(sigma_s1) | |
| lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
| lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) | |
| lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) | |
| m0, m1 = model_output_list[-1], model_output_list[-2] | |
| h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 | |
| r0 = h_0 / h | |
| D0, D1 = m0, (1.0 / r0) * (m0 - m1) | |
| mu_xt = ( | |
| (sigma_t / sigma_s0 * torch.exp(-h)) * sample | |
| + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 | |
| + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 | |
| ) | |
| sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) | |
| if sigma > 0.0: | |
| noise = (prev_latents - mu_xt) / sigma | |
| else: | |
| noise = torch.tensor([0.0]).to(sample.device) | |
| prev_sample = mu_xt + sigma * noise | |
| return noise, prev_sample | |
| if scheduler.step_index is None: | |
| scheduler._init_step_index(timestep) | |
| model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents) | |
| for i in range(scheduler.config.solver_order - 1): | |
| scheduler.model_outputs[i] = scheduler.model_outputs[i + 1] | |
| scheduler.model_outputs[-1] = model_output | |
| if scheduler.lower_order_nums < 1: | |
| noise, prev_sample = first_order_update(model_output, latents) | |
| else: | |
| noise, prev_sample = second_order_update(scheduler.model_outputs, latents) | |
| if scheduler.lower_order_nums < scheduler.config.solver_order: | |
| scheduler.lower_order_nums += 1 | |
| # upon completion increase step index by one | |
| scheduler._step_index += 1 | |
| return noise, prev_sample | |
| # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise | |
| def compute_noise(scheduler, *args): | |
| if isinstance(scheduler, DDIMScheduler): | |
| return compute_noise_ddim(scheduler, *args) | |
| elif ( | |
| isinstance(scheduler, DPMSolverMultistepScheduler) | |
| and scheduler.config.algorithm_type == "sde-dpmsolver++" | |
| and scheduler.config.solver_order == 2 | |
| ): | |
| return compute_noise_sde_dpm_pp_2nd(scheduler, *args) | |
| else: | |
| raise NotImplementedError |