Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,17 +7,9 @@ import numpy as np
|
|
| 7 |
import cv2
|
| 8 |
from PIL import Image
|
| 9 |
from diffusers.utils import load_image
|
| 10 |
-
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
|
| 11 |
-
from diffusers.models.controlnet_flux import FluxControlNetModel
|
| 12 |
from diffusers.utils import export_to_gif
|
| 13 |
import random
|
| 14 |
|
| 15 |
-
def process_controlnet_img(image):
|
| 16 |
-
controlnet_img = np.array(image)
|
| 17 |
-
controlnet_img = cv2.Canny(controlnet_img, 100, 200)
|
| 18 |
-
controlnet_img = HWC3(controlnet_img)
|
| 19 |
-
controlnet_img = Image.fromarray(controlnet_img)
|
| 20 |
-
|
| 21 |
# load pipelines
|
| 22 |
base_model = "black-forest-labs/FLUX.1-schnell"
|
| 23 |
|
|
@@ -32,11 +24,6 @@ pipe.transformer.to(memory_format=torch.channels_last)
|
|
| 32 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
| 33 |
|
| 34 |
|
| 35 |
-
# controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
|
| 36 |
-
# controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
| 37 |
-
# pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
| 38 |
-
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
| 39 |
-
|
| 40 |
MAX_SEED = 2**32-1
|
| 41 |
|
| 42 |
def convert_to_centered_scale(num):
|
|
@@ -56,8 +43,6 @@ def convert_to_centered_scale(num):
|
|
| 56 |
def generate(concept_1, concept_2, scale, prompt, randomize_seed=True, seed=42, recalc_directions=True, iterations=200, steps=4, interm_steps=9, guidance_scale=3.5,
|
| 57 |
x_concept_1="", x_concept_2="",
|
| 58 |
avg_diff_x=None,
|
| 59 |
-
img2img_type = None, img = None,
|
| 60 |
-
controlnet_scale= None, ip_adapter_scale=None,
|
| 61 |
total_images=[],
|
| 62 |
progress=gr.Progress(track_tqdm=True)
|
| 63 |
):
|
|
@@ -65,12 +50,10 @@ def generate(concept_1, concept_2, scale, prompt, randomize_seed=True, seed=42,
|
|
| 65 |
# check if avg diff for directions need to be re-calculated
|
| 66 |
print("slider_x", slider_x)
|
| 67 |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
|
| 68 |
-
#torch.manual_seed(seed)
|
| 69 |
if randomize_seed:
|
| 70 |
seed = random.randint(0, MAX_SEED)
|
| 71 |
|
| 72 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
| 73 |
-
#avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
|
| 74 |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
| 75 |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
| 76 |
|
|
@@ -82,7 +65,7 @@ def generate(concept_1, concept_2, scale, prompt, randomize_seed=True, seed=42,
|
|
| 82 |
image = clip_slider.generate(prompt,
|
| 83 |
width=768,
|
| 84 |
height=768,
|
| 85 |
-
|
| 86 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 87 |
images.append(image)
|
| 88 |
canvas = Image.new('RGB', (256*interm_steps, 256))
|
|
@@ -100,46 +83,6 @@ def generate(concept_1, concept_2, scale, prompt, randomize_seed=True, seed=42,
|
|
| 100 |
|
| 101 |
return x_concept_1,x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
|
| 102 |
|
| 103 |
-
@spaces.GPU
|
| 104 |
-
def update_scales(x,prompt,seed, steps, interm_steps, guidance_scale,
|
| 105 |
-
avg_diff_x,
|
| 106 |
-
img2img_type = None, img = None,
|
| 107 |
-
controlnet_scale= None, ip_adapter_scale=None, total_images=[], progress=gr.Progress(track_tqdm=True)):
|
| 108 |
-
print("Hola", x)
|
| 109 |
-
avg_diff = avg_diff_x.cuda()
|
| 110 |
-
|
| 111 |
-
# for spectrum generation
|
| 112 |
-
images = []
|
| 113 |
-
|
| 114 |
-
high_scale = x
|
| 115 |
-
low_scale = -1 * x
|
| 116 |
-
|
| 117 |
-
if img2img_type=="controlnet canny" and img is not None:
|
| 118 |
-
control_img = process_controlnet_img(img)
|
| 119 |
-
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 120 |
-
elif img2img_type=="ip adapter" and img is not None:
|
| 121 |
-
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 122 |
-
else:
|
| 123 |
-
for i in range(interm_steps):
|
| 124 |
-
cur_scale = low_scale + (high_scale - low_scale) * i / (steps - 1)
|
| 125 |
-
image = clip_slider.generate(prompt,
|
| 126 |
-
width=768,
|
| 127 |
-
height=768,
|
| 128 |
-
#guidance_scale=guidance_scale,
|
| 129 |
-
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 130 |
-
images.append(image)
|
| 131 |
-
canvas = Image.new('RGB', (256*interm_steps, 256))
|
| 132 |
-
for i, im in enumerate(images):
|
| 133 |
-
canvas.paste(im.resize((256,256)), (256 * i, 0))
|
| 134 |
-
|
| 135 |
-
scale_total = convert_to_centered_scale(interm_steps)
|
| 136 |
-
scale_min = scale_total[0]
|
| 137 |
-
scale_max = scale_total[-1]
|
| 138 |
-
scale_middle = scale_total.index(0)
|
| 139 |
-
post_generation_slider_update = gr.update(minimum=scale_min, maximum=scale_max, visible=True)
|
| 140 |
-
|
| 141 |
-
return export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update
|
| 142 |
-
|
| 143 |
def update_pre_generated_images(slider_value, total_images):
|
| 144 |
number_images = len(total_images)
|
| 145 |
if(number_images > 0):
|
|
@@ -151,39 +94,11 @@ def update_pre_generated_images(slider_value, total_images):
|
|
| 151 |
def reset_recalc_directions():
|
| 152 |
return True
|
| 153 |
|
| 154 |
-
|
| 155 |
-
#group {
|
| 156 |
-
position: relative;
|
| 157 |
-
width: 600px; /* Increased width */
|
| 158 |
-
height: 600px; /* Increased height */
|
| 159 |
-
margin-bottom: 20px;
|
| 160 |
-
background-color: white;
|
| 161 |
-
}
|
| 162 |
-
#x {
|
| 163 |
-
position: absolute;
|
| 164 |
-
bottom: 20px; /* Moved further down */
|
| 165 |
-
left: 30px; /* Adjusted left margin */
|
| 166 |
-
width: 540px; /* Increased width to match the new container size */
|
| 167 |
-
}
|
| 168 |
-
#y {
|
| 169 |
-
position: absolute;
|
| 170 |
-
bottom: 200px; /* Increased bottom margin to ensure proper spacing from #x */
|
| 171 |
-
left: 20px; /* Adjusted left margin */
|
| 172 |
-
width: 540px; /* Increased width to match the new container size */
|
| 173 |
-
transform: rotate(-90deg);
|
| 174 |
-
transform-origin: left bottom;
|
| 175 |
-
}
|
| 176 |
-
#image_out {
|
| 177 |
-
position: absolute;
|
| 178 |
-
width: 80%; /* Adjust width as needed */
|
| 179 |
-
right: 10px;
|
| 180 |
-
top: 10px; /* Increased top margin to clear space occupied by #x */
|
| 181 |
-
}
|
| 182 |
-
'''
|
| 183 |
intro = """
|
| 184 |
<div style="display: flex;align-items: center;justify-content: center">
|
| 185 |
-
<img src="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux/resolve/main/Group 4-16.png" width="
|
| 186 |
-
<h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block">Latent Navigation</h1>
|
| 187 |
</div>
|
| 188 |
<div style="display: flex;align-items: center;justify-content: center">
|
| 189 |
<h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Exploring CLIP text space with FLUX.1 schnell 🪐</h3>
|
|
@@ -205,6 +120,8 @@ image_seq = gr.Image(label="Strip", elem_id="strip")
|
|
| 205 |
output_image = gr.Image(label="Gif", elem_id="gif")
|
| 206 |
post_generation_image = gr.Image(label="Generated Images")
|
| 207 |
post_generation_slider = gr.Slider(minimum=-2, maximum=2, value=0, step=1, interactive=False)
|
|
|
|
|
|
|
| 208 |
with gr.Blocks(css=css) as demo:
|
| 209 |
|
| 210 |
gr.HTML(intro)
|
|
@@ -212,22 +129,16 @@ with gr.Blocks(css=css) as demo:
|
|
| 212 |
x_concept_1 = gr.State("")
|
| 213 |
x_concept_2 = gr.State("")
|
| 214 |
total_images = gr.State([])
|
| 215 |
-
# y_concept_1 = gr.State("")
|
| 216 |
-
# y_concept_2 = gr.State("")
|
| 217 |
|
| 218 |
avg_diff_x = gr.State()
|
| 219 |
-
#avg_diff_y = gr.State()
|
| 220 |
|
| 221 |
recalc_directions = gr.State(False)
|
| 222 |
|
| 223 |
-
#with gr.Tab("text2image"):
|
| 224 |
with gr.Row():
|
| 225 |
with gr.Column():
|
| 226 |
with gr.Row():
|
| 227 |
concept_1 = gr.Textbox(label="1st direction to steer", placeholder="winter")
|
| 228 |
concept_2 = gr.Textbox(label="2nd direction to steer", placeholder="summer")
|
| 229 |
-
#slider_x = gr.Dropdown(label="Slider concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
| 230 |
-
#slider_y = gr.Dropdown(label="Slider Y concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
| 231 |
prompt = gr.Textbox(label="Prompt", info="Describe what you to be steered by the directions", placeholder="A dog in the park")
|
| 232 |
x = gr.Slider(minimum=0, value=1.5, step=0.1, maximum=4.0, label="Strength", info="maximum strength on each direction (unstable beyond 2.5)")
|
| 233 |
submit = gr.Button("Generate directions")
|
|
@@ -242,15 +153,12 @@ with gr.Blocks(css=css) as demo:
|
|
| 242 |
with gr.Group(elem_id="group"):
|
| 243 |
post_generation_image.render()
|
| 244 |
post_generation_slider.render()
|
| 245 |
-
#y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
| 246 |
with gr.Row():
|
| 247 |
with gr.Column(scale=4, min_width=50):
|
| 248 |
image_seq.render()
|
| 249 |
|
| 250 |
with gr.Column(scale=2, min_width=50):
|
| 251 |
output_image.render()
|
| 252 |
-
# with gr.Row():
|
| 253 |
-
# generate_butt = gr.Button("generate")
|
| 254 |
|
| 255 |
with gr.Accordion(label="advanced options", open=False):
|
| 256 |
iterations = gr.Slider(label = "num iterations for clip directions", minimum=0, value=200, maximum=500, step=1)
|
|
@@ -264,67 +172,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 264 |
value=3.5,
|
| 265 |
)
|
| 266 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 267 |
-
seed
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
# with gr.Tab(label="image2image"):
|
| 271 |
-
# with gr.Row():
|
| 272 |
-
# with gr.Column():
|
| 273 |
-
# image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
| 274 |
-
# slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
| 275 |
-
# slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
| 276 |
-
# img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="", visible=False, value="controlnet canny")
|
| 277 |
-
# prompt_a = gr.Textbox(label="Prompt")
|
| 278 |
-
# submit_a = gr.Button("Submit")
|
| 279 |
-
# with gr.Column():
|
| 280 |
-
# with gr.Group(elem_id="group"):
|
| 281 |
-
# x_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False)
|
| 282 |
-
# y_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
| 283 |
-
# output_image_a = gr.Image(elem_id="image_out")
|
| 284 |
-
# with gr.Row():
|
| 285 |
-
# generate_butt_a = gr.Button("generate")
|
| 286 |
-
|
| 287 |
-
# with gr.Accordion(label="advanced options", open=False):
|
| 288 |
-
# iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300)
|
| 289 |
-
# steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
| 290 |
-
# guidance_scale_a = gr.Slider(
|
| 291 |
-
# label="Guidance scale",
|
| 292 |
-
# minimum=0.1,
|
| 293 |
-
# maximum=10.0,
|
| 294 |
-
# step=0.1,
|
| 295 |
-
# value=5,
|
| 296 |
-
# )
|
| 297 |
-
# controlnet_conditioning_scale = gr.Slider(
|
| 298 |
-
# label="controlnet conditioning scale",
|
| 299 |
-
# minimum=0.5,
|
| 300 |
-
# maximum=5.0,
|
| 301 |
-
# step=0.1,
|
| 302 |
-
# value=0.7,
|
| 303 |
-
# )
|
| 304 |
-
# ip_adapter_scale = gr.Slider(
|
| 305 |
-
# label="ip adapter scale",
|
| 306 |
-
# minimum=0.5,
|
| 307 |
-
# maximum=5.0,
|
| 308 |
-
# step=0.1,
|
| 309 |
-
# value=0.8,
|
| 310 |
-
# visible=False
|
| 311 |
-
# )
|
| 312 |
-
# seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
| 313 |
-
|
| 314 |
-
# submit.click(fn=generate,
|
| 315 |
-
# inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y],
|
| 316 |
-
# outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image])
|
| 317 |
submit.click(fn=generate,
|
| 318 |
inputs=[concept_1, concept_2, x, prompt, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images],
|
| 319 |
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed])
|
| 320 |
|
| 321 |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
| 322 |
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
| 323 |
-
#x.release(fn=update_scales, inputs=[x, prompt, seed, steps, interm_steps, guidance_scale, avg_diff_x, total_images], outputs=[output_image, image_seq, total_images, post_generation_image, post_generation_slider], trigger_mode='always_last')
|
| 324 |
-
# generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a])
|
| 325 |
-
# submit_a.click(fn=generate,
|
| 326 |
-
# inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale],
|
| 327 |
-
# outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image_a])
|
| 328 |
post_generation_slider.change(fn=update_pre_generated_images, inputs=[post_generation_slider, total_images], outputs=[post_generation_image], queue=False, show_progress="hidden", concurrency_limit=None)
|
| 329 |
|
| 330 |
if __name__ == "__main__":
|
|
|
|
| 7 |
import cv2
|
| 8 |
from PIL import Image
|
| 9 |
from diffusers.utils import load_image
|
|
|
|
|
|
|
| 10 |
from diffusers.utils import export_to_gif
|
| 11 |
import random
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
# load pipelines
|
| 14 |
base_model = "black-forest-labs/FLUX.1-schnell"
|
| 15 |
|
|
|
|
| 24 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
| 25 |
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
MAX_SEED = 2**32-1
|
| 28 |
|
| 29 |
def convert_to_centered_scale(num):
|
|
|
|
| 43 |
def generate(concept_1, concept_2, scale, prompt, randomize_seed=True, seed=42, recalc_directions=True, iterations=200, steps=4, interm_steps=9, guidance_scale=3.5,
|
| 44 |
x_concept_1="", x_concept_2="",
|
| 45 |
avg_diff_x=None,
|
|
|
|
|
|
|
| 46 |
total_images=[],
|
| 47 |
progress=gr.Progress(track_tqdm=True)
|
| 48 |
):
|
|
|
|
| 50 |
# check if avg diff for directions need to be re-calculated
|
| 51 |
print("slider_x", slider_x)
|
| 52 |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
|
|
|
|
| 53 |
if randomize_seed:
|
| 54 |
seed = random.randint(0, MAX_SEED)
|
| 55 |
|
| 56 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
|
|
|
| 57 |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
| 58 |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
| 59 |
|
|
|
|
| 65 |
image = clip_slider.generate(prompt,
|
| 66 |
width=768,
|
| 67 |
height=768,
|
| 68 |
+
guidance_scale=guidance_scale,
|
| 69 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 70 |
images.append(image)
|
| 71 |
canvas = Image.new('RGB', (256*interm_steps, 256))
|
|
|
|
| 83 |
|
| 84 |
return x_concept_1,x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
def update_pre_generated_images(slider_value, total_images):
|
| 87 |
number_images = len(total_images)
|
| 88 |
if(number_images > 0):
|
|
|
|
| 94 |
def reset_recalc_directions():
|
| 95 |
return True
|
| 96 |
|
| 97 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
intro = """
|
| 99 |
<div style="display: flex;align-items: center;justify-content: center">
|
| 100 |
+
<img src="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux/resolve/main/Group 4-16.png" width="120" style="display: inline-block">
|
| 101 |
+
<h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block;font-size:1.1em">Latent Navigation</h1>
|
| 102 |
</div>
|
| 103 |
<div style="display: flex;align-items: center;justify-content: center">
|
| 104 |
<h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Exploring CLIP text space with FLUX.1 schnell 🪐</h3>
|
|
|
|
| 120 |
output_image = gr.Image(label="Gif", elem_id="gif")
|
| 121 |
post_generation_image = gr.Image(label="Generated Images")
|
| 122 |
post_generation_slider = gr.Slider(minimum=-2, maximum=2, value=0, step=1, interactive=False)
|
| 123 |
+
seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label="Seed", interactive=True, randomize=True)
|
| 124 |
+
|
| 125 |
with gr.Blocks(css=css) as demo:
|
| 126 |
|
| 127 |
gr.HTML(intro)
|
|
|
|
| 129 |
x_concept_1 = gr.State("")
|
| 130 |
x_concept_2 = gr.State("")
|
| 131 |
total_images = gr.State([])
|
|
|
|
|
|
|
| 132 |
|
| 133 |
avg_diff_x = gr.State()
|
|
|
|
| 134 |
|
| 135 |
recalc_directions = gr.State(False)
|
| 136 |
|
|
|
|
| 137 |
with gr.Row():
|
| 138 |
with gr.Column():
|
| 139 |
with gr.Row():
|
| 140 |
concept_1 = gr.Textbox(label="1st direction to steer", placeholder="winter")
|
| 141 |
concept_2 = gr.Textbox(label="2nd direction to steer", placeholder="summer")
|
|
|
|
|
|
|
| 142 |
prompt = gr.Textbox(label="Prompt", info="Describe what you to be steered by the directions", placeholder="A dog in the park")
|
| 143 |
x = gr.Slider(minimum=0, value=1.5, step=0.1, maximum=4.0, label="Strength", info="maximum strength on each direction (unstable beyond 2.5)")
|
| 144 |
submit = gr.Button("Generate directions")
|
|
|
|
| 153 |
with gr.Group(elem_id="group"):
|
| 154 |
post_generation_image.render()
|
| 155 |
post_generation_slider.render()
|
|
|
|
| 156 |
with gr.Row():
|
| 157 |
with gr.Column(scale=4, min_width=50):
|
| 158 |
image_seq.render()
|
| 159 |
|
| 160 |
with gr.Column(scale=2, min_width=50):
|
| 161 |
output_image.render()
|
|
|
|
|
|
|
| 162 |
|
| 163 |
with gr.Accordion(label="advanced options", open=False):
|
| 164 |
iterations = gr.Slider(label = "num iterations for clip directions", minimum=0, value=200, maximum=500, step=1)
|
|
|
|
| 172 |
value=3.5,
|
| 173 |
)
|
| 174 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 175 |
+
seed.render()
|
| 176 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
submit.click(fn=generate,
|
| 178 |
inputs=[concept_1, concept_2, x, prompt, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images],
|
| 179 |
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed])
|
| 180 |
|
| 181 |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
| 182 |
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
post_generation_slider.change(fn=update_pre_generated_images, inputs=[post_generation_slider, total_images], outputs=[post_generation_image], queue=False, show_progress="hidden", concurrency_limit=None)
|
| 184 |
|
| 185 |
if __name__ == "__main__":
|