Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
from clip_slider_pipeline import CLIPSliderFlux
|
| 4 |
-
from diffusers import FluxPipeline
|
| 5 |
import torch
|
| 6 |
import numpy as np
|
| 7 |
import cv2
|
|
@@ -18,18 +18,22 @@ def process_controlnet_img(image):
|
|
| 18 |
controlnet_img = Image.fromarray(controlnet_img)
|
| 19 |
|
| 20 |
# load pipelines
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
torch_dtype=torch.bfloat16)
|
| 23 |
#pipe.enable_model_cpu_offload()
|
| 24 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
base_model = 'black-forest-labs/FLUX.1-schnell'
|
| 27 |
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
|
| 28 |
# controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
| 29 |
# pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
| 30 |
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
| 31 |
|
| 32 |
-
|
| 33 |
@spaces.GPU(duration=200)
|
| 34 |
def generate(slider_x, prompt, seed, recalc_directions, iterations, steps, guidance_scale,
|
| 35 |
x_concept_1, x_concept_2,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
from clip_slider_pipeline import CLIPSliderFlux
|
| 4 |
+
from diffusers import FluxPipeline, AutoencoderTiny
|
| 5 |
import torch
|
| 6 |
import numpy as np
|
| 7 |
import cv2
|
|
|
|
| 18 |
controlnet_img = Image.fromarray(controlnet_img)
|
| 19 |
|
| 20 |
# load pipelines
|
| 21 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 22 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",
|
| 23 |
+
vae=taef1,
|
| 24 |
torch_dtype=torch.bfloat16)
|
| 25 |
#pipe.enable_model_cpu_offload()
|
| 26 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
| 27 |
|
| 28 |
+
clip_slider.transformer.to(memory_format=torch.channels_last)
|
| 29 |
+
clip_slider.transformer = torch.compile(clip_slider.unet, mode="max-autotune", fullgraph=True)
|
| 30 |
+
|
| 31 |
base_model = 'black-forest-labs/FLUX.1-schnell'
|
| 32 |
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
|
| 33 |
# controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
| 34 |
# pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
| 35 |
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
| 36 |
|
|
|
|
| 37 |
@spaces.GPU(duration=200)
|
| 38 |
def generate(slider_x, prompt, seed, recalc_directions, iterations, steps, guidance_scale,
|
| 39 |
x_concept_1, x_concept_2,
|