File size: 32,747 Bytes
fafd10e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "556cfb74",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "8b8cea40",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Generating train split: 100%|██████████| 61/61 [00:00<00:00, 176.99 examples/s]\n"
     ]
    },
    {
     "ename": "ValueError",
     "evalue": "Unknown split \"auto_submissions\". Should be one of ['train'].",
     "output_type": "error",
     "traceback": [
      "\u001b[31m---------------------------------------------------------------------------\u001b[39m",
      "\u001b[31mValueError\u001b[39m                                Traceback (most recent call last)",
      "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[2]\u001b[39m\u001b[32m, line 2\u001b[39m\n\u001b[32m      1\u001b[39m \u001b[38;5;66;03m# access results dataset\u001b[39;00m\n\u001b[32m----> \u001b[39m\u001b[32m2\u001b[39m res = \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mginkgo-datapoints/abdev-bench-results\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msplit\u001b[49m\u001b[43m=\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mauto_submissions\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[32m      3\u001b[39m \u001b[38;5;28mprint\u001b[39m(res)\n",
      "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/load.py:2096\u001b[39m, in \u001b[36mload_dataset\u001b[39m\u001b[34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[39m\n\u001b[32m   2092\u001b[39m \u001b[38;5;66;03m# Build dataset for splits\u001b[39;00m\n\u001b[32m   2093\u001b[39m keep_in_memory = (\n\u001b[32m   2094\u001b[39m     keep_in_memory \u001b[38;5;28;01mif\u001b[39;00m keep_in_memory \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m is_small_dataset(builder_instance.info.dataset_size)\n\u001b[32m   2095\u001b[39m )\n\u001b[32m-> \u001b[39m\u001b[32m2096\u001b[39m ds = \u001b[43mbuilder_instance\u001b[49m\u001b[43m.\u001b[49m\u001b[43mas_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[43msplit\u001b[49m\u001b[43m=\u001b[49m\u001b[43msplit\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m=\u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m=\u001b[49m\u001b[43mkeep_in_memory\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m   2097\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m save_infos:\n\u001b[32m   2098\u001b[39m     builder_instance._save_infos()\n",
      "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/builder.py:1127\u001b[39m, in \u001b[36mDatasetBuilder.as_dataset\u001b[39m\u001b[34m(self, split, run_post_process, verification_mode, in_memory)\u001b[39m\n\u001b[32m   1124\u001b[39m verification_mode = VerificationMode(verification_mode \u001b[38;5;129;01mor\u001b[39;00m VerificationMode.BASIC_CHECKS)\n\u001b[32m   1126\u001b[39m \u001b[38;5;66;03m# Create a dataset for each of the given splits\u001b[39;00m\n\u001b[32m-> \u001b[39m\u001b[32m1127\u001b[39m datasets = \u001b[43mmap_nested\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m   1128\u001b[39m \u001b[43m    \u001b[49m\u001b[43mpartial\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m   1129\u001b[39m \u001b[43m        \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_build_single_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m   1130\u001b[39m \u001b[43m        \u001b[49m\u001b[43mrun_post_process\u001b[49m\u001b[43m=\u001b[49m\u001b[43mrun_post_process\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m   1131\u001b[39m \u001b[43m        \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m=\u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m   1132\u001b[39m \u001b[43m        \u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m=\u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m   1133\u001b[39m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m   1134\u001b[39m \u001b[43m    \u001b[49m\u001b[43msplit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m   1135\u001b[39m \u001b[43m    \u001b[49m\u001b[43mmap_tuple\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m   1136\u001b[39m \u001b[43m    \u001b[49m\u001b[43mdisable_tqdm\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m   1137\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m   1138\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(datasets, \u001b[38;5;28mdict\u001b[39m):\n\u001b[32m   1139\u001b[39m     datasets = DatasetDict(datasets)\n",
      "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/utils/py_utils.py:494\u001b[39m, in \u001b[36mmap_nested\u001b[39m\u001b[34m(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, parallel_min_length, batched, batch_size, types, disable_tqdm, desc)\u001b[39m\n\u001b[32m    492\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m batched:\n\u001b[32m    493\u001b[39m     data_struct = [data_struct]\n\u001b[32m--> \u001b[39m\u001b[32m494\u001b[39m mapped = \u001b[43mfunction\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata_struct\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m    495\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m batched:\n\u001b[32m    496\u001b[39m     mapped = mapped[\u001b[32m0\u001b[39m]\n",
      "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/builder.py:1157\u001b[39m, in \u001b[36mDatasetBuilder._build_single_dataset\u001b[39m\u001b[34m(self, split, run_post_process, verification_mode, in_memory)\u001b[39m\n\u001b[32m   1154\u001b[39m     split = Split(split)\n\u001b[32m   1156\u001b[39m \u001b[38;5;66;03m# Build base dataset\u001b[39;00m\n\u001b[32m-> \u001b[39m\u001b[32m1157\u001b[39m ds = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_as_dataset\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m   1158\u001b[39m \u001b[43m    \u001b[49m\u001b[43msplit\u001b[49m\u001b[43m=\u001b[49m\u001b[43msplit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m   1159\u001b[39m \u001b[43m    \u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m=\u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m   1160\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m   1161\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m run_post_process:\n\u001b[32m   1162\u001b[39m     \u001b[38;5;28;01mfor\u001b[39;00m resource_file_name \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m._post_processing_resources(split).values():\n",
      "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/builder.py:1231\u001b[39m, in \u001b[36mDatasetBuilder._as_dataset\u001b[39m\u001b[34m(self, split, in_memory)\u001b[39m\n\u001b[32m   1229\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m._check_legacy_cache():\n\u001b[32m   1230\u001b[39m     dataset_name = \u001b[38;5;28mself\u001b[39m.name\n\u001b[32m-> \u001b[39m\u001b[32m1231\u001b[39m dataset_kwargs = \u001b[43mArrowReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43minfo\u001b[49m\u001b[43m)\u001b[49m\u001b[43m.\u001b[49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m   1232\u001b[39m \u001b[43m    \u001b[49m\u001b[43mname\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdataset_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m   1233\u001b[39m \u001b[43m    \u001b[49m\u001b[43minstructions\u001b[49m\u001b[43m=\u001b[49m\u001b[43msplit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m   1234\u001b[39m \u001b[43m    \u001b[49m\u001b[43msplit_infos\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43minfo\u001b[49m\u001b[43m.\u001b[49m\u001b[43msplits\u001b[49m\u001b[43m.\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m   1235\u001b[39m \u001b[43m    \u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m=\u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m   1236\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m   1237\u001b[39m fingerprint = \u001b[38;5;28mself\u001b[39m._get_dataset_fingerprint(split)\n\u001b[32m   1238\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m Dataset(fingerprint=fingerprint, **dataset_kwargs)\n",
      "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/arrow_reader.py:248\u001b[39m, in \u001b[36mBaseReader.read\u001b[39m\u001b[34m(self, name, instructions, split_infos, in_memory)\u001b[39m\n\u001b[32m    227\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mread\u001b[39m(\n\u001b[32m    228\u001b[39m     \u001b[38;5;28mself\u001b[39m,\n\u001b[32m    229\u001b[39m     name,\n\u001b[32m   (...)\u001b[39m\u001b[32m    232\u001b[39m     in_memory=\u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[32m    233\u001b[39m ):\n\u001b[32m    234\u001b[39m \u001b[38;5;250m    \u001b[39m\u001b[33;03m\"\"\"Returns Dataset instance(s).\u001b[39;00m\n\u001b[32m    235\u001b[39m \n\u001b[32m    236\u001b[39m \u001b[33;03m    Args:\u001b[39;00m\n\u001b[32m   (...)\u001b[39m\u001b[32m    245\u001b[39m \u001b[33;03m         kwargs to build a single Dataset instance.\u001b[39;00m\n\u001b[32m    246\u001b[39m \u001b[33;03m    \"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m248\u001b[39m     files = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mget_file_instructions\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minstructions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msplit_infos\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m    249\u001b[39m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m files:\n\u001b[32m    250\u001b[39m         msg = \u001b[33mf\u001b[39m\u001b[33m'\u001b[39m\u001b[33mInstruction \u001b[39m\u001b[33m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00minstructions\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m\u001b[33m corresponds to no data!\u001b[39m\u001b[33m'\u001b[39m\n",
      "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/arrow_reader.py:221\u001b[39m, in \u001b[36mBaseReader.get_file_instructions\u001b[39m\u001b[34m(self, name, instruction, split_infos)\u001b[39m\n\u001b[32m    219\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mget_file_instructions\u001b[39m(\u001b[38;5;28mself\u001b[39m, name, instruction, split_infos):\n\u001b[32m    220\u001b[39m \u001b[38;5;250m    \u001b[39m\u001b[33;03m\"\"\"Return list of dict {'filename': str, 'skip': int, 'take': int}\"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m221\u001b[39m     file_instructions = \u001b[43mmake_file_instructions\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m    222\u001b[39m \u001b[43m        \u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msplit_infos\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minstruction\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfiletype_suffix\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_filetype_suffix\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprefix_path\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_path\u001b[49m\n\u001b[32m    223\u001b[39m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m    224\u001b[39m     files = file_instructions.file_instructions\n\u001b[32m    225\u001b[39m     \u001b[38;5;28;01mreturn\u001b[39;00m files\n",
      "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/arrow_reader.py:130\u001b[39m, in \u001b[36mmake_file_instructions\u001b[39m\u001b[34m(name, split_infos, instruction, filetype_suffix, prefix_path)\u001b[39m\n\u001b[32m    128\u001b[39m     instruction = ReadInstruction.from_spec(instruction)\n\u001b[32m    129\u001b[39m \u001b[38;5;66;03m# Create the absolute instruction (per split)\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m130\u001b[39m absolute_instructions = \u001b[43minstruction\u001b[49m\u001b[43m.\u001b[49m\u001b[43mto_absolute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname2len\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m    132\u001b[39m \u001b[38;5;66;03m# For each split, return the files instruction (skip/take)\u001b[39;00m\n\u001b[32m    133\u001b[39m file_instructions = []\n",
      "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/arrow_reader.py:620\u001b[39m, in \u001b[36mReadInstruction.to_absolute\u001b[39m\u001b[34m(self, name2len)\u001b[39m\n\u001b[32m    608\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mto_absolute\u001b[39m(\u001b[38;5;28mself\u001b[39m, name2len):\n\u001b[32m    609\u001b[39m \u001b[38;5;250m    \u001b[39m\u001b[33;03m\"\"\"Translate instruction into a list of absolute instructions.\u001b[39;00m\n\u001b[32m    610\u001b[39m \n\u001b[32m    611\u001b[39m \u001b[33;03m    Those absolute instructions are then to be added together.\u001b[39;00m\n\u001b[32m   (...)\u001b[39m\u001b[32m    618\u001b[39m \u001b[33;03m        list of _AbsoluteInstruction instances (corresponds to the + in spec).\u001b[39;00m\n\u001b[32m    619\u001b[39m \u001b[33;03m    \"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m620\u001b[39m     \u001b[38;5;28;01mreturn\u001b[39;00m [\u001b[43m_rel_to_abs_instr\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrel_instr\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname2len\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m rel_instr \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m._relative_instructions]\n",
      "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/arrow_reader.py:437\u001b[39m, in \u001b[36m_rel_to_abs_instr\u001b[39m\u001b[34m(rel_instr, name2len)\u001b[39m\n\u001b[32m    435\u001b[39m split = rel_instr.splitname\n\u001b[32m    436\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m split \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m name2len:\n\u001b[32m--> \u001b[39m\u001b[32m437\u001b[39m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[33mf\u001b[39m\u001b[33m'\u001b[39m\u001b[33mUnknown split \u001b[39m\u001b[33m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00msplit\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m\u001b[33m. Should be one of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlist\u001b[39m(name2len)\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m.\u001b[39m\u001b[33m'\u001b[39m)\n\u001b[32m    438\u001b[39m num_examples = name2len[split]\n\u001b[32m    439\u001b[39m from_ = rel_instr.from_\n",
      "\u001b[31mValueError\u001b[39m: Unknown split \"auto_submissions\". Should be one of ['train']."
     ]
    }
   ],
   "source": [
    "# access results dataset\n",
    "res = load_dataset(\"ginkgo-datapoints/abdev-bench-results\", split=\"auto_submissions\")\n",
    "print(res)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "2b136f33",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>submission_id</th>\n",
       "      <th>spearman</th>\n",
       "      <th>top_10_recall</th>\n",
       "      <th>dataset</th>\n",
       "      <th>assay</th>\n",
       "      <th>model</th>\n",
       "      <th>user</th>\n",
       "      <th>submission_time</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>empty</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>empty</td>\n",
       "      <td>empty</td>\n",
       "      <td>anonymous</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>08a9b21d-a06f-4c44-a2c2-2d7a03c558c3</td>\n",
       "      <td>0.121806</td>\n",
       "      <td>0.125000</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Tm2</td>\n",
       "      <td>anonymoussubmissions</td>\n",
       "      <td>anonymoussubmissions</td>\n",
       "      <td>2025-08-13T13:51:50.519786</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>08a9b21d-a06f-4c44-a2c2-2d7a03c558c3</td>\n",
       "      <td>0.187877</td>\n",
       "      <td>0.083333</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Titer</td>\n",
       "      <td>anonymoussubmissions</td>\n",
       "      <td>anonymoussubmissions</td>\n",
       "      <td>2025-08-13T13:51:50.519786</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>134c9dfb-3b27-48ac-8f5d-c8663d8bebed</td>\n",
       "      <td>0.121806</td>\n",
       "      <td>0.125000</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Tm2</td>\n",
       "      <td>anonymoussubmissions</td>\n",
       "      <td>anonymoussubmissions</td>\n",
       "      <td>2025-08-13T13:44:10.148599</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>134c9dfb-3b27-48ac-8f5d-c8663d8bebed</td>\n",
       "      <td>0.187877</td>\n",
       "      <td>0.083333</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Titer</td>\n",
       "      <td>anonymoussubmissions</td>\n",
       "      <td>anonymoussubmissions</td>\n",
       "      <td>2025-08-13T13:44:10.148599</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>3763ce44-0ec5-4eec-80a8-361b2bfe4ee0</td>\n",
       "      <td>0.121806</td>\n",
       "      <td>0.125000</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Tm2</td>\n",
       "      <td>test</td>\n",
       "      <td>test</td>\n",
       "      <td>2025-08-13T13:46:15.853105</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>3763ce44-0ec5-4eec-80a8-361b2bfe4ee0</td>\n",
       "      <td>0.187877</td>\n",
       "      <td>0.083333</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Titer</td>\n",
       "      <td>test</td>\n",
       "      <td>test</td>\n",
       "      <td>2025-08-13T13:46:15.853105</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>378b4d52-4d96-40b6-b554-b8f5d8bc5fbd</td>\n",
       "      <td>0.121806</td>\n",
       "      <td>0.125000</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Tm2</td>\n",
       "      <td>test</td>\n",
       "      <td>test</td>\n",
       "      <td>2025-08-07T19:10:24.934110</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>378b4d52-4d96-40b6-b554-b8f5d8bc5fbd</td>\n",
       "      <td>0.187877</td>\n",
       "      <td>0.083333</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Titer</td>\n",
       "      <td>test</td>\n",
       "      <td>test</td>\n",
       "      <td>2025-08-07T19:10:24.934110</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>56b4ab17-560e-474b-93f1-ff81fa14fb10</td>\n",
       "      <td>0.121806</td>\n",
       "      <td>0.125000</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Tm2</td>\n",
       "      <td>test</td>\n",
       "      <td>test</td>\n",
       "      <td>2025-08-12T17:49:22.380229</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>56b4ab17-560e-474b-93f1-ff81fa14fb10</td>\n",
       "      <td>0.187877</td>\n",
       "      <td>0.083333</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Titer</td>\n",
       "      <td>test</td>\n",
       "      <td>test</td>\n",
       "      <td>2025-08-12T17:49:22.380229</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>7cdcae41-c32a-430a-8a39-be3f00fd315d</td>\n",
       "      <td>0.121806</td>\n",
       "      <td>0.125000</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Tm2</td>\n",
       "      <td>asdfasdfasdfas</td>\n",
       "      <td>asdfasdfasdfas</td>\n",
       "      <td>2025-08-12T17:53:35.204680</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>7cdcae41-c32a-430a-8a39-be3f00fd315d</td>\n",
       "      <td>0.187877</td>\n",
       "      <td>0.083333</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Titer</td>\n",
       "      <td>asdfasdfasdfas</td>\n",
       "      <td>asdfasdfasdfas</td>\n",
       "      <td>2025-08-12T17:53:35.204680</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>afe237b4-97cf-4e81-a4c1-f4d6fa76aa04</td>\n",
       "      <td>0.121806</td>\n",
       "      <td>0.125000</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Tm2</td>\n",
       "      <td>anonymoussubmissions</td>\n",
       "      <td>anonymoussubmissions</td>\n",
       "      <td>2025-08-13T13:43:46.042660</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14</th>\n",
       "      <td>afe237b4-97cf-4e81-a4c1-f4d6fa76aa04</td>\n",
       "      <td>0.187877</td>\n",
       "      <td>0.083333</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Titer</td>\n",
       "      <td>anonymoussubmissions</td>\n",
       "      <td>anonymoussubmissions</td>\n",
       "      <td>2025-08-13T13:43:46.042660</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15</th>\n",
       "      <td>b84d6c6c-36d3-42d4-84ad-a91a3758199d</td>\n",
       "      <td>0.121806</td>\n",
       "      <td>0.125000</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Tm2</td>\n",
       "      <td>test</td>\n",
       "      <td>test</td>\n",
       "      <td>2025-08-13T13:41:41.024660</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>16</th>\n",
       "      <td>b84d6c6c-36d3-42d4-84ad-a91a3758199d</td>\n",
       "      <td>0.187877</td>\n",
       "      <td>0.083333</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Titer</td>\n",
       "      <td>test</td>\n",
       "      <td>test</td>\n",
       "      <td>2025-08-13T13:41:41.024660</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>17</th>\n",
       "      <td>d2804c50-33a8-4465-8e27-20762adda13e</td>\n",
       "      <td>0.358522</td>\n",
       "      <td>0.208333</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>HIC</td>\n",
       "      <td>notmyusername_test</td>\n",
       "      <td>notmyusername_test</td>\n",
       "      <td>2025-07-24T20:56:08.953098</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>18</th>\n",
       "      <td>d2804c50-33a8-4465-8e27-20762adda13e</td>\n",
       "      <td>0.358522</td>\n",
       "      <td>0.208333</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>HIC</td>\n",
       "      <td>notmyusername_test</td>\n",
       "      <td>notmyusername_test</td>\n",
       "      <td>2025-07-24T20:56:08.953098</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19</th>\n",
       "      <td>d82e3ef6-e54c-4854-b8b7-bee28f04791e</td>\n",
       "      <td>0.121806</td>\n",
       "      <td>0.125000</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Tm2</td>\n",
       "      <td>test</td>\n",
       "      <td>test</td>\n",
       "      <td>2025-08-12T17:47:17.935587</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20</th>\n",
       "      <td>d82e3ef6-e54c-4854-b8b7-bee28f04791e</td>\n",
       "      <td>0.187877</td>\n",
       "      <td>0.083333</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Titer</td>\n",
       "      <td>test</td>\n",
       "      <td>test</td>\n",
       "      <td>2025-08-12T17:47:17.935587</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>21</th>\n",
       "      <td>fa4d1c11-770d-40a8-b846-12e219b4b87a</td>\n",
       "      <td>0.121806</td>\n",
       "      <td>0.125000</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Tm2</td>\n",
       "      <td>test</td>\n",
       "      <td>test</td>\n",
       "      <td>2025-08-12T17:49:20.145092</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>22</th>\n",
       "      <td>fa4d1c11-770d-40a8-b846-12e219b4b87a</td>\n",
       "      <td>0.187877</td>\n",
       "      <td>0.083333</td>\n",
       "      <td>GDPa1</td>\n",
       "      <td>Titer</td>\n",
       "      <td>test</td>\n",
       "      <td>test</td>\n",
       "      <td>2025-08-12T17:49:20.145092</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                           submission_id  spearman  top_10_recall dataset  \\\n",
       "0                                  empty  0.000000       0.000000   GDPa1   \n",
       "1   08a9b21d-a06f-4c44-a2c2-2d7a03c558c3  0.121806       0.125000   GDPa1   \n",
       "2   08a9b21d-a06f-4c44-a2c2-2d7a03c558c3  0.187877       0.083333   GDPa1   \n",
       "3   134c9dfb-3b27-48ac-8f5d-c8663d8bebed  0.121806       0.125000   GDPa1   \n",
       "4   134c9dfb-3b27-48ac-8f5d-c8663d8bebed  0.187877       0.083333   GDPa1   \n",
       "5   3763ce44-0ec5-4eec-80a8-361b2bfe4ee0  0.121806       0.125000   GDPa1   \n",
       "6   3763ce44-0ec5-4eec-80a8-361b2bfe4ee0  0.187877       0.083333   GDPa1   \n",
       "7   378b4d52-4d96-40b6-b554-b8f5d8bc5fbd  0.121806       0.125000   GDPa1   \n",
       "8   378b4d52-4d96-40b6-b554-b8f5d8bc5fbd  0.187877       0.083333   GDPa1   \n",
       "9   56b4ab17-560e-474b-93f1-ff81fa14fb10  0.121806       0.125000   GDPa1   \n",
       "10  56b4ab17-560e-474b-93f1-ff81fa14fb10  0.187877       0.083333   GDPa1   \n",
       "11  7cdcae41-c32a-430a-8a39-be3f00fd315d  0.121806       0.125000   GDPa1   \n",
       "12  7cdcae41-c32a-430a-8a39-be3f00fd315d  0.187877       0.083333   GDPa1   \n",
       "13  afe237b4-97cf-4e81-a4c1-f4d6fa76aa04  0.121806       0.125000   GDPa1   \n",
       "14  afe237b4-97cf-4e81-a4c1-f4d6fa76aa04  0.187877       0.083333   GDPa1   \n",
       "15  b84d6c6c-36d3-42d4-84ad-a91a3758199d  0.121806       0.125000   GDPa1   \n",
       "16  b84d6c6c-36d3-42d4-84ad-a91a3758199d  0.187877       0.083333   GDPa1   \n",
       "17  d2804c50-33a8-4465-8e27-20762adda13e  0.358522       0.208333   GDPa1   \n",
       "18  d2804c50-33a8-4465-8e27-20762adda13e  0.358522       0.208333   GDPa1   \n",
       "19  d82e3ef6-e54c-4854-b8b7-bee28f04791e  0.121806       0.125000   GDPa1   \n",
       "20  d82e3ef6-e54c-4854-b8b7-bee28f04791e  0.187877       0.083333   GDPa1   \n",
       "21  fa4d1c11-770d-40a8-b846-12e219b4b87a  0.121806       0.125000   GDPa1   \n",
       "22  fa4d1c11-770d-40a8-b846-12e219b4b87a  0.187877       0.083333   GDPa1   \n",
       "\n",
       "    assay                 model                  user  \\\n",
       "0   empty                 empty             anonymous   \n",
       "1     Tm2  anonymoussubmissions  anonymoussubmissions   \n",
       "2   Titer  anonymoussubmissions  anonymoussubmissions   \n",
       "3     Tm2  anonymoussubmissions  anonymoussubmissions   \n",
       "4   Titer  anonymoussubmissions  anonymoussubmissions   \n",
       "5     Tm2                  test                  test   \n",
       "6   Titer                  test                  test   \n",
       "7     Tm2                  test                  test   \n",
       "8   Titer                  test                  test   \n",
       "9     Tm2                  test                  test   \n",
       "10  Titer                  test                  test   \n",
       "11    Tm2        asdfasdfasdfas        asdfasdfasdfas   \n",
       "12  Titer        asdfasdfasdfas        asdfasdfasdfas   \n",
       "13    Tm2  anonymoussubmissions  anonymoussubmissions   \n",
       "14  Titer  anonymoussubmissions  anonymoussubmissions   \n",
       "15    Tm2                  test                  test   \n",
       "16  Titer                  test                  test   \n",
       "17    HIC    notmyusername_test    notmyusername_test   \n",
       "18    HIC    notmyusername_test    notmyusername_test   \n",
       "19    Tm2                  test                  test   \n",
       "20  Titer                  test                  test   \n",
       "21    Tm2                  test                  test   \n",
       "22  Titer                  test                  test   \n",
       "\n",
       "               submission_time  \n",
       "0                          NaN  \n",
       "1   2025-08-13T13:51:50.519786  \n",
       "2   2025-08-13T13:51:50.519786  \n",
       "3   2025-08-13T13:44:10.148599  \n",
       "4   2025-08-13T13:44:10.148599  \n",
       "5   2025-08-13T13:46:15.853105  \n",
       "6   2025-08-13T13:46:15.853105  \n",
       "7   2025-08-07T19:10:24.934110  \n",
       "8   2025-08-07T19:10:24.934110  \n",
       "9   2025-08-12T17:49:22.380229  \n",
       "10  2025-08-12T17:49:22.380229  \n",
       "11  2025-08-12T17:53:35.204680  \n",
       "12  2025-08-12T17:53:35.204680  \n",
       "13  2025-08-13T13:43:46.042660  \n",
       "14  2025-08-13T13:43:46.042660  \n",
       "15  2025-08-13T13:41:41.024660  \n",
       "16  2025-08-13T13:41:41.024660  \n",
       "17  2025-07-24T20:56:08.953098  \n",
       "18  2025-07-24T20:56:08.953098  \n",
       "19  2025-08-12T17:47:17.935587  \n",
       "20  2025-08-12T17:47:17.935587  \n",
       "21  2025-08-12T17:49:20.145092  \n",
       "22  2025-08-12T17:49:20.145092  "
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pd.read_csv(\"hf://datasets/ginkgo-datapoints/abdev-bench-results/auto_submissions/metrics_all.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6c7e0ad6",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "antibody_datasets",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.13.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}