File size: 1,334 Bytes
7a1c35b 4d9df8e 7a1c35b 8f9985e fc0bf00 7a1c35b 8f9985e 7a1c35b 8f9985e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
"""
Constants for the Antibody Developability Benchmark
"""
import os
from huggingface_hub import HfApi
import pandas as pd
ASSAY_LIST = ["AC-SINS_pH7.4", "PR_CHO", "HIC", "Tm2", "Titer"]
ASSAY_RENAME = {
"AC-SINS_pH7.4": "Self-association",
"PR_CHO": "Polyreactivity",
"HIC": "Hydrophobicity",
"Tm2": "Thermostability",
"Titer": "Titer",
}
ASSAY_DESCRIPTION = {
"AC-SINS_pH7.4": "Self association by AC-SINS at pH 7.4",
"PR_CHO": "Polyreactivity by bead-based method against CHO SMP and ovalbumin",
"HIC": "Hydrophobicity by HIC",
"Tm2": "Thermostability by nanoDSF",
"Titer": "Titer by Valita",
}
ASSAY_EMOJIS = {
"AC-SINS_pH7.4": "🧲",
"PR_CHO": "🎯",
"HIC": "💧",
"Tm2": "🌡️",
"Titer": "🧪",
}
# Input CSV file requirements
MINIMAL_NUMBER_OF_ROWS: int = 50
REQUIRED_COLUMNS: list[str] = [
"antibody_name",
"vh_protein_sequence",
"vl_protein_sequence",
] + ASSAY_LIST
ANTIBODY_NAMES = pd.read_csv("data/example-predictions.csv")["antibody_name"].tolist()
# Huggingface API
TOKEN = os.environ.get("HF_TOKEN")
CACHE_PATH = os.getenv("HF_HOME", ".")
API = HfApi(token=TOKEN)
# Huggingface repos
ORGANIZATION = "ginkgo-datapoints"
SUBMISSIONS_REPO = f"{ORGANIZATION}/abdev-bench-submissions"
RESULTS_REPO = f"{ORGANIZATION}/abdev-bench-results"
|