|
import pytest |
|
import pandas as pd |
|
import gradio as gr |
|
from validation import validate_csv_file, validate_csv_can_be_read, validate_dataframe |
|
from constants import REQUIRED_COLUMNS, ASSAY_LIST |
|
|
|
|
|
class TestValidateCsvCanBeRead: |
|
"""Test cases for validate_csv_can_be_read function""" |
|
|
|
def test_valid_csv_can_be_read(self, valid_csv_content): |
|
df = validate_csv_can_be_read(valid_csv_content) |
|
assert isinstance(df, pd.DataFrame) |
|
|
|
def test_empty_csv_raises_error(self): |
|
empty_csv = "" |
|
|
|
with pytest.raises(gr.Error) as exc_info: |
|
validate_csv_can_be_read(empty_csv) |
|
|
|
assert "empty or contains no valid data" in str(exc_info.value) |
|
|
|
def test_invalid_csv_format_raises_error(self): |
|
|
|
malformed_csv = 'column1,column2\nvalue1,"unclosed quote\nvalue4,value5' |
|
|
|
with pytest.raises(gr.Error) as exc_info: |
|
validate_csv_can_be_read(malformed_csv) |
|
|
|
assert "Invalid CSV format" in str(exc_info.value) |
|
|
|
def test_csv_with_quoted_fields_can_be_read(self): |
|
|
|
base_row = 'test_antibody,"EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDYGDGYYFDYWGQGTLVTVSS","DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPFTFGQGTKVEIK",95.2,0.85,0.92,0.78,0.81,72.5' |
|
csv_content = "antibody_name,vh_protein_sequence,vl_protein_sequence,SEC %Monomer,HIC,PR_CHO,AC-SINS_pH6.0,AC-SINS_pH7.4,Tm\n" |
|
csv_content += "\n".join([base_row] * 10) |
|
|
|
df = validate_csv_can_be_read(csv_content) |
|
assert isinstance(df, pd.DataFrame) |
|
|
|
|
|
class TestValidateDataframe: |
|
def test_valid_dataframe_passes(self, valid_input_dataframe): |
|
validate_dataframe(valid_input_dataframe) |
|
|
|
def test_missing_columns_raises_error(self, valid_input_dataframe): |
|
missing_column = REQUIRED_COLUMNS[0] |
|
df = valid_input_dataframe.copy() |
|
df.drop(columns=[missing_column], inplace=True) |
|
|
|
with pytest.raises(gr.Error) as exc_info: |
|
validate_dataframe(df) |
|
|
|
assert f"Missing required columns: {missing_column}" in str(exc_info.value) |
|
|
|
def test_at_least_one_assay_column_raises_error(self, valid_input_dataframe): |
|
df = valid_input_dataframe.copy() |
|
df.drop(columns=ASSAY_LIST, inplace=True, errors="ignore") |
|
with pytest.raises(gr.Error) as exc_info: |
|
validate_dataframe(df) |
|
assert "CSV should include at least one of the following assay columns" in str( |
|
exc_info.value |
|
) |
|
|
|
def test_empty_dataframe_raises_error(self, valid_input_dataframe): |
|
empty_df = valid_input_dataframe.head(0) |
|
|
|
with pytest.raises(gr.Error) as exc_info: |
|
validate_dataframe(empty_df) |
|
|
|
assert "CSV file is empty" in str(exc_info.value) |
|
|
|
def test_missing_antibodies_raises_error(self, valid_input_dataframe): |
|
df = valid_input_dataframe.head(50) |
|
with pytest.raises(gr.Error) as exc_info: |
|
validate_dataframe(df) |
|
assert "Missing predictions for" in str(exc_info.value) |
|
|
|
def test_missing_values_raises_error(self, valid_input_dataframe): |
|
bad_column = REQUIRED_COLUMNS[0] |
|
df = valid_input_dataframe.copy() |
|
df[bad_column] = [None] * len(df) |
|
with pytest.raises(gr.Error) as exc_info: |
|
validate_dataframe(df) |
|
|
|
assert f"contains {len(df)} missing values" in str(exc_info.value) |
|
|
|
def test_csv_with_extra_columns_passes(self, valid_input_dataframe): |
|
extra_column = "extra_column_1" |
|
df = valid_input_dataframe.copy() |
|
df[extra_column] = ["extra1"] * len(df) |
|
df[extra_column] = ["extra2"] * len(df) |
|
validate_dataframe(df) |
|
|
|
def test_duplicate_antibody_names_raises_error(self, valid_input_dataframe): |
|
df = valid_input_dataframe.copy() |
|
df = pd.concat([df, df.head(1)], ignore_index=True) |
|
with pytest.raises(gr.Error) as exc_info: |
|
validate_dataframe(df) |
|
assert "CSV should have only one row per antibody. Found 1 duplicates." in str( |
|
exc_info.value |
|
) |
|
|
|
def test_unrecognized_antibody_names_raises_error(self, valid_input_dataframe): |
|
df = valid_input_dataframe.copy() |
|
df.loc[0, "antibody_name"] = "unrecognized_antibody" |
|
with pytest.raises(gr.Error) as exc_info: |
|
validate_dataframe(df) |
|
assert f"Found unrecognized antibody names: {'unrecognized_antibody'}" in str( |
|
exc_info.value |
|
) |
|
|
|
|
|
class TestValidateCsvFile: |
|
def test_valid_csv_passes(self, valid_csv_content): |
|
validate_csv_file(valid_csv_content) |
|
|