loodvanniekerkginkgo's picture
Added some more info in About section
11e5e48
raw
history blame
8.15 kB
from pathlib import Path
import json
import pandas as pd
import gradio as gr
from gradio_leaderboard import Leaderboard
from evaluation import evaluate_problem
from utils import read_submission_from_hub, write_results
from about import ASSAY_LIST, ASSAY_RENAME, ASSAY_EMOJIS
def evaluate_boundary(filename):
print(filename)
local_path = read_submission_from_hub(filename)
with Path(local_path).open("r") as f:
raw = f.read()
data_dict = json.loads(raw)
try:
result = evaluate_problem(data_dict['problem_type'], local_path)
except Exception as e:
raise gr.Error(f'Evaluation failed: {e}. No results written to results dataset.')
write_results(data_dict, result)
return
def get_leaderboard_table(assay: str | None = None):
# ds = load_dataset(results_repo, split='train', download_mode="force_redownload")
# full_df = pd.DataFrame(ds)
# full_df['full results'] = full_df['result_filename'].apply(lambda x: make_boundary_clickable(x)).astype(str)
# full_df.rename(columns={'submission_time': 'submission time', 'problem_type': 'problem type'}, inplace=True)
# to_show = full_df.copy(deep=True)
# to_show = to_show[to_show['user'] != 'test']
# to_show = to_show[['submission time', 'problem type', 'user', 'score', 'full results']]
# to_show['user'] = to_show['user'].apply(lambda x: make_user_clickable(x)).astype(str)
# Previously hosted on HF hub, local for now (Can also pull directly from github backend)
column_order = ["model", "property", "spearman", "spearman_abs"] # "assay",
df = pd.read_csv("data/metrics_all.csv").drop_duplicates(subset=["model", "assay"])
df["property"] = df["assay"].map(ASSAY_RENAME)
df = df.query("assay.isin(@ASSAY_RENAME.keys())")
if assay is not None:
df = df[df['assay'] == assay]
df = df[column_order]
return df.sort_values(by="spearman_abs", ascending=False)
def get_leaderboard_object(assay: str | None = None):
df = get_leaderboard_table(assay=assay)
filter_columns = ["model"]
if assay is None:
filter_columns.append("property")
# TODO how to sort filter columns alphabetically?
Leaderboard(
value=df,
datatype=["str", "str", "str", "number"],
select_columns=["model", "property", "spearman"],
search_columns=["model"],
filter_columns=filter_columns,
every=60,
render=True
)
def show_output_box(message):
return gr.update(value=message, visible=True)
#
# def gradio_interface() -> gr.Blocks:
with gr.Blocks() as demo:
gr.Markdown("""
## Welcome to the Ginkgo Antibody Developability Benchmark Leaderboard!
Participants can submit their model to the leaderboard by
""")
with gr.Tabs(elem_classes="tab-buttons"):
with gr.TabItem("🚀 Leaderboard", elem_id="abdev-benchmark-tab-table"):
gr.Markdown("# Antibody Developability Benchmark Leaderboard")
get_leaderboard_object()
# gr.Markdown("Extra info here")
# Procedurally make these 5 tabs
for assay in ASSAY_LIST:
with gr.TabItem(f"{ASSAY_EMOJIS[assay]} {ASSAY_RENAME[assay]}", elem_id=f"abdev-benchmark-tab-table"):
gr.Markdown(f"# {ASSAY_RENAME[assay]} (measured by {assay})")
get_leaderboard_object(assay=assay)
with gr.TabItem("❔About", elem_id="abdev-benchmark-tab-table"):
gr.Markdown(
"""
## About this challenge
We're inviting the ML/bio community to predict developability properties for 244 antibodies from the [GDPa1 dataset](https://huggingface.co/datasets/ginkgo-datapoints/GDPa1).
**What is antibody developability?**
Antibodies have to be manufacturable, stable in high concentrations, and have low off-target effects.
Properties such as these can often hinder the progression of an antibody to the clinic, and are collectively referred to as 'developability'.
Here we show 5 of these properties and invite the community to submit and develop better predictors, which will be tested out on a heldout private set to assess model generalization.
**How to submit?**
TODO
**How to evaluate?**
TODO
"""
)
# dropdown = gr.Dropdown(choices=filenames, label="Choose a file")
# plot_output = gr.Plot()
# with gr.TabItem("🔍 Visualize", elem_id="boundary-benchmark-tab-table"):
# ds = load_dataset(results_repo, split='train', download_mode="force_redownload")
# full_df = pd.DataFrame(ds)
# filenames = full_df['result_filename'].to_list()
# with gr.Row():
# with gr.Column():
# dropdown = gr.Dropdown(choices=filenames, label="Choose a leaderboard entry", value=filenames[0])
# rld_btn = gr.Button(value="Reload")
# with gr.Column():
# plot = gr.Plot()
# def get_boundary_vis(selected_file):
# local_path = read_result_from_hub(selected_file)
# with Path(local_path).open("r") as f:
# raw = f.read()
# data_dict = json.loads(raw)
# boundary_json = data_dict['boundary_json']
# if data_dict['problem_type'] == 'mhd_stable':
# raise gr.Error("Sorry this isn't implemented for mhd_stable submissions yet!")
# else:
# boundary = load_boundary(boundary_json)
# vis = make_visual(boundary)
# return vis
# demo.load(get_boundary_vis, dropdown, plot)
# rld_btn.click(get_boundary_vis, dropdown, plot)
# with gr.TabItem("✉️ Submit", elem_id="boundary-benchmark-tab-table"):
# gr.Markdown(
# """
# # Plasma Boundary Evaluation Submission
# Upload your plasma boundary JSON and select the problem type to get your score.
# """
# )
# filename = gr.State(value=None)
# eval_state = gr.State(value=None)
# user_state = gr.State(value=None)
# # gr.LoginButton()
# with gr.Row():
# with gr.Column():
# problem_type = gr.Dropdown(PROBLEM_TYPES, label="Problem Type")
# username_input = gr.Textbox(
# label="Username",
# placeholder="Enter your Hugging Face username",
# info="This will be displayed on the leaderboard."
# )
# with gr.Column():
# boundary_file = gr.File(label="Boundary JSON File (.json)")
# username_input.change(
# fn=lambda x: x if x.strip() else None,
# inputs=username_input,
# outputs=user_state
# )
# submit_btn = gr.Button("Evaluate")
# message = gr.Textbox(label="Status", lines=1, visible=False)
# # help message
# gr.Markdown("If you have issues with submission or using the leaderboard, please start a discussion in the Community tab of this Space.")
# submit_btn.click(
# submit_boundary,
# inputs=[problem_type, boundary_file, user_state],
# outputs=[message, filename],
# ).then(
# fn=show_output_box,
# inputs=[message],
# outputs=[message],
# ).then(
# fn=evaluate_boundary,
# inputs=[filename],
# outputs=[eval_state]
# )
if __name__ == "__main__":
demo.launch()