loodvanniekerkginkgo's picture
Fixed state error
34f59c0
raw
history blame
9.31 kB
import pandas as pd
import gradio as gr
from gradio_leaderboard import Leaderboard
from utils import fetch_hf_results, show_output_box
from constants import (
ASSAY_LIST,
ASSAY_RENAME,
ASSAY_EMOJIS,
ASSAY_DESCRIPTION,
EXAMPLE_FILE_DICT,
LEADERBOARD_DISPLAY_COLUMNS,
)
from about import ABOUT_TEXT, FAQS
from submit import make_submission
def format_leaderboard_table(df_results: pd.DataFrame, assay: str | None = None):
df = df_results.query("assay.isin(@ASSAY_RENAME.keys())").copy()
if assay is not None:
df = df[df["assay"] == assay]
df = df[LEADERBOARD_DISPLAY_COLUMNS]
return df.sort_values(by="spearman", ascending=False)
def get_leaderboard_object(assay: str | None = None):
filter_columns = ["dataset"]
if assay is None:
filter_columns.append("property")
# TODO how to sort filter columns alphabetically?
# Bug: Can't leave search_columns empty because then it says "Column None not found in headers"
# Note(Lood): Would be nice to make it clear that the Search Column is searching on model name
# TODO(Lood) check that this actually refreshes using the function
lb = Leaderboard(
value=format_leaderboard_table(df_results=current_dataframe, assay=assay),
datatype=["str", "str", "str", "number"],
select_columns=["model", "property", "spearman", "dataset"],
search_columns=["model"],
filter_columns=filter_columns,
every=15,
render=True,
)
return lb
# Initialize global dataframe
current_dataframe = fetch_hf_results()
with gr.Blocks() as demo:
timer = gr.Timer(3) # Run every 3 seconds when page is focused
data_version = gr.State(value=0) # Track data changes
def update_current_dataframe():
global current_dataframe
new_dataframe = fetch_hf_results()
# Check if data has actually changed
if not current_dataframe.equals(new_dataframe):
current_dataframe = new_dataframe
return data_version.value + 1 # Increment version to trigger updates
return data_version.value
timer.tick(fn=update_current_dataframe, outputs=data_version)
# TODO: Add Ginkgo logo here on the top right
gr.Markdown("""
## Welcome to the Ginkgo Antibody Developability Benchmark!
**Beta version, not publicly launched yet**
Participants can submit their model to the leaderboard by uploading a CSV file (see the "✉️ Submit" tab).
See more details in the "❔About" tab.
""")
with gr.Tabs(elem_classes="tab-buttons"):
with gr.TabItem("❔About", elem_id="abdev-benchmark-tab-table"):
gr.Image(
value="./assets/competition_logo.jpg",
show_label=False,
# elem_classes=["resized-image"],
show_download_button=False,
width="50vw", # 50% of the "viewport width"
)
gr.Markdown(ABOUT_TEXT)
for i, (question, answer) in enumerate(FAQS.items()):
# Would love to make questions bold but accordion doesn't support it
question = f"{i+1}. {question}"
with gr.Accordion(question, open=False):
gr.Markdown(f"*{answer}*") # Italics for answers
# Procedurally make these 5 tabs
for i, assay in enumerate(ASSAY_LIST):
with gr.TabItem(
f"{ASSAY_EMOJIS[assay]} {ASSAY_RENAME[assay]}",
elem_id="abdev-benchmark-tab-table",
) as tab_item:
gr.Markdown(f"# {ASSAY_DESCRIPTION[assay]}")
lb = get_leaderboard_object(assay=assay)
def refresh_leaderboard(assay=assay):
return format_leaderboard_table(df_results=current_dataframe, assay=assay)
# Refresh when data version changes
data_version.change(fn=refresh_leaderboard, outputs=lb)
with gr.TabItem("🚀 Overall", elem_id="abdev-benchmark-tab-table") as overall_tab:
gr.Markdown(
"# Antibody Developability Benchmark Leaderboard over all properties"
)
lb = get_leaderboard_object()
def refresh_overall_leaderboard():
return format_leaderboard_table(df_results=current_dataframe)
# Refresh when data version changes
data_version.change(fn=refresh_overall_leaderboard, outputs=lb)
with gr.TabItem("✉️ Submit", elem_id="boundary-benchmark-tab-table"):
gr.Markdown(
"""
# Antibody Developability Submission
Upload a CSV to get a score!
Please use your Hugging Face account name to submit your model - we use this to track separate submissions, and if you would like to remain anonymous please set up an anonymous huggingface account.
Your submission will be evaluated and added to the leaderboard.
"""
)
submission_type_state = gr.State(value="GDPa1")
download_file_state = gr.State(value=EXAMPLE_FILE_DICT["GDPa1"])
with gr.Row():
with gr.Column():
username_input = gr.Textbox(
label="Username",
placeholder="Enter your Hugging Face username",
info="This will be used to track your submissions, and to update your results if you submit again.",
)
model_name_input = gr.Textbox(
label="Model Name",
placeholder="Enter your model name (e.g., 'MyProteinLM-v1')",
info="This will be displayed on the leaderboard.",
)
model_description_input = gr.Textbox(
label="Model Description (optional)",
placeholder="Brief description of your model and approach",
info="Describe your model, training data, or methodology.",
lines=3,
)
with gr.Column():
submission_type_dropdown = gr.Dropdown(
choices=["GDPa1", "GDPa1_cross_validation"],
value="GDPa1",
label="Submission Type",
)
download_button = gr.DownloadButton(
label="📥 Download example submission CSV for GDPa1",
value=EXAMPLE_FILE_DICT["GDPa1"],
variant="secondary",
)
submission_file = gr.File(label="Submission CSV")
def update_submission_type_and_file(submission_type):
"""
Based on the submission type selected in the dropdown,
Update the submission type state
Dynamically update example file for download
"""
download_file = EXAMPLE_FILE_DICT.get(
submission_type, EXAMPLE_FILE_DICT["GDPa1"]
)
download_label = (
f"📥 Download example submission CSV for {submission_type}"
)
return (
submission_type,
download_file,
gr.DownloadButton(
label=download_label,
value=download_file,
variant="secondary",
),
)
# Update submission type state and download button when dropdown changes
submission_type_dropdown.change(
fn=update_submission_type_and_file,
inputs=submission_type_dropdown,
outputs=[submission_type_state, download_file_state, download_button],
)
submit_btn = gr.Button("Evaluate")
message = gr.Textbox(label="Status", lines=1, visible=False)
# help message
gr.Markdown(
"If you have issues with submission or using the leaderboard, please start a discussion in the Community tab of this Space."
)
submit_btn.click(
make_submission,
inputs=[
submission_file,
username_input,
submission_type_state,
model_name_input,
model_description_input,
],
outputs=[message],
).then(
fn=show_output_box,
inputs=[message],
outputs=[message],
)
# Footnote
gr.Markdown(
"""
<div style="text-align: center; font-size: 14px; color: gray; margin-top: 2em;">
📬 For questions or feedback, contact <a href="mailto:[email protected]">[email protected]</a> or visit the Community tab at the top of this page.
</div>
""",
elem_id="contact-footer",
)
if __name__ == "__main__":
demo.launch(ssr_mode=False)