Commit
·
58db0a0
1
Parent(s):
d4cc92c
Removing old sterralator code, removed extra print statement
Browse files
about.py
CHANGED
@@ -12,9 +12,9 @@ Here we show 5 of these properties and invite the community to submit and develo
|
|
12 |
**How to submit?**
|
13 |
|
14 |
1. Download the [GDPa1 dataset](https://huggingface.co/datasets/ginkgo-datapoints/GDPa1)
|
15 |
-
2. Make predictions for all the antibody sequences
|
16 |
-
3. Submit a CSV file containing the `"antibody_name"` column and a column
|
17 |
-
There is an example submission
|
18 |
|
19 |
For the cross-validation metrics (if training only on the GDPa1 dataset), use the `"hierarchical_cluster_IgG_isotype_stratified_fold"` column to split the dataset into folds and make predictions for each of the folds.
|
20 |
Submit a CSV file in the same format but also containing the `"hierarchical_cluster_IgG_isotype_stratified_fold"` column.
|
@@ -29,9 +29,10 @@ For the heldout private set, we will calculate these results privately at the en
|
|
29 |
**How to contribute?**
|
30 |
|
31 |
We'd like to add some more existing models to the leaderboard. Some examples of models we'd like to add:
|
32 |
-
- ESM embeddings
|
33 |
- Absolute folding stability models
|
34 |
- AbLEF
|
|
|
35 |
If you would like to collaborate with others, start a discussion on the "Community" tab at the top of this page.
|
36 |
|
37 |
### FAQs
|
|
|
12 |
**How to submit?**
|
13 |
|
14 |
1. Download the [GDPa1 dataset](https://huggingface.co/datasets/ginkgo-datapoints/GDPa1)
|
15 |
+
2. Make predictions for all the antibody sequences for your property of interest.
|
16 |
+
3. Submit a CSV file containing the `"antibody_name"` column and a column matching the property name you are predicting (e.g. `"antibody_name,Titer"` if you are predicting Titer).
|
17 |
+
There is an example submission file on the "✉️ Submit" tab.
|
18 |
|
19 |
For the cross-validation metrics (if training only on the GDPa1 dataset), use the `"hierarchical_cluster_IgG_isotype_stratified_fold"` column to split the dataset into folds and make predictions for each of the folds.
|
20 |
Submit a CSV file in the same format but also containing the `"hierarchical_cluster_IgG_isotype_stratified_fold"` column.
|
|
|
29 |
**How to contribute?**
|
30 |
|
31 |
We'd like to add some more existing models to the leaderboard. Some examples of models we'd like to add:
|
32 |
+
- ESM embeddings + ridge regression
|
33 |
- Absolute folding stability models
|
34 |
- AbLEF
|
35 |
+
|
36 |
If you would like to collaborate with others, start a discussion on the "Community" tab at the top of this page.
|
37 |
|
38 |
### FAQs
|
eval.py
DELETED
File without changes
|
evaluation.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
def evaluate_problem(
|
2 |
-
problem_type: str,
|
3 |
-
input_file: str,
|
4 |
-
# ) -> problems.EvaluationSingleObjective | problems.EvaluationMultiObjective:
|
5 |
-
):
|
6 |
-
pass
|
7 |
-
# with Path(input_file).open("r") as f:
|
8 |
-
# raw = f.read()
|
9 |
-
# data_dict = json.loads(raw)
|
10 |
-
# data = data_dict['boundary_json']
|
11 |
-
|
12 |
-
# print("Starting evaluation.")
|
13 |
-
|
14 |
-
# match problem_type:
|
15 |
-
# case "geometrical":
|
16 |
-
# boundary = load_boundary(data)
|
17 |
-
# result = problems.GeometricalProblem().evaluate(boundary)
|
18 |
-
# case "simple_to_build":
|
19 |
-
# boundary = load_boundary(data)
|
20 |
-
# result = problems.SimpleToBuildQIStellarator().evaluate(boundary)
|
21 |
-
# case "mhd_stable":
|
22 |
-
# boundaries = load_boundaries(data)
|
23 |
-
# result = problems.MHDStableQIStellarator().evaluate(boundaries)
|
24 |
-
# case _:
|
25 |
-
# raise ValueError(f"Unknown problem type: {problem_type}")
|
26 |
-
|
27 |
-
# print("Finished evaluation.")
|
28 |
-
# return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
CHANGED
@@ -1,24 +1,11 @@
|
|
1 |
-
import pathlib
|
2 |
-
import tempfile
|
3 |
-
import json
|
4 |
-
|
5 |
-
import gradio as gr
|
6 |
import pandas as pd
|
7 |
from datasets import load_dataset
|
8 |
-
|
9 |
|
10 |
-
from constants import
|
11 |
|
12 |
pd.set_option('display.max_columns', None)
|
13 |
|
14 |
-
# def make_user_clickable(name):
|
15 |
-
# link =f'https://huggingface.co/{name}'
|
16 |
-
# return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{name}</a>'
|
17 |
-
|
18 |
-
# def make_boundary_clickable(filename):
|
19 |
-
# link =f'https://huggingface.co/datasets/proxima-fusion/constellaration-bench-results/blob/main/{filename}'
|
20 |
-
# return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">link</a>'
|
21 |
-
|
22 |
|
23 |
def show_output_box(message):
|
24 |
return gr.update(value=message, visible=True)
|
@@ -33,62 +20,4 @@ def fetch_hf_results():
|
|
33 |
# Show latest submission only
|
34 |
df = df.sort_values("submission_time", ascending=False).drop_duplicates(subset=["model", "assay"], keep="first")
|
35 |
df["property"] = df["assay"].map(ASSAY_RENAME)
|
36 |
-
print(df.head())
|
37 |
return df
|
38 |
-
|
39 |
-
|
40 |
-
def read_result_from_hub(filename):
|
41 |
-
local_path = hf_hub_download(
|
42 |
-
repo_id=RESULTS_REPO,
|
43 |
-
repo_type="dataset",
|
44 |
-
filename=filename,
|
45 |
-
)
|
46 |
-
return local_path
|
47 |
-
|
48 |
-
|
49 |
-
def read_submission_from_hub(filename):
|
50 |
-
local_path = hf_hub_download(
|
51 |
-
repo_id=SUBMISSIONS_REPO,
|
52 |
-
repo_type="dataset",
|
53 |
-
filename=filename,
|
54 |
-
)
|
55 |
-
return local_path
|
56 |
-
|
57 |
-
|
58 |
-
def write_results(record, result):
|
59 |
-
record.update(result)
|
60 |
-
record["result_filename"] = (
|
61 |
-
record["submission_filename"].rstrip(".json") + "_results.json"
|
62 |
-
)
|
63 |
-
print(record["result_filename"])
|
64 |
-
record["evaluated"] = True
|
65 |
-
|
66 |
-
record["objectives"] = json.dumps(record.get("objectives", []))
|
67 |
-
record["feasibilities"] = json.dumps(record.get("feasibility", []))
|
68 |
-
|
69 |
-
if "objective" not in record.keys():
|
70 |
-
record["objective"] = 0.0
|
71 |
-
record["minimize_objective"] = True
|
72 |
-
record["feasibility"] = sum(record["feasibility"]) / len(record["feasibility"])
|
73 |
-
|
74 |
-
with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as tmp:
|
75 |
-
json.dump(record, tmp, indent=2)
|
76 |
-
tmp.flush()
|
77 |
-
tmp_name = tmp.name
|
78 |
-
|
79 |
-
API.upload_file(
|
80 |
-
path_or_fileobj=tmp_name,
|
81 |
-
path_in_repo=record["result_filename"],
|
82 |
-
repo_id=RESULTS_REPO,
|
83 |
-
repo_type="dataset",
|
84 |
-
commit_message=f"Add result data for {record['result_filename']}",
|
85 |
-
)
|
86 |
-
|
87 |
-
pathlib.Path(tmp_name).unlink()
|
88 |
-
return
|
89 |
-
|
90 |
-
|
91 |
-
def get_user(profile: gr.OAuthProfile | None) -> str:
|
92 |
-
if profile is None:
|
93 |
-
return "Please login to submit a boundary for evaluation."
|
94 |
-
return profile.username
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
from datasets import load_dataset
|
3 |
+
import gradio as gr
|
4 |
|
5 |
+
from constants import RESULTS_REPO, ASSAY_RENAME, LEADERBOARD_RESULTS_COLUMNS
|
6 |
|
7 |
pd.set_option('display.max_columns', None)
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def show_output_box(message):
|
11 |
return gr.update(value=message, visible=True)
|
|
|
20 |
# Show latest submission only
|
21 |
df = df.sort_values("submission_time", ascending=False).drop_duplicates(subset=["model", "assay"], keep="first")
|
22 |
df["property"] = df["assay"].map(ASSAY_RENAME)
|
|
|
23 |
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|