validate cv
Browse files- constants.py +11 -1
- data/example-predictions-cv.csv +0 -0
- submit.py +7 -2
- validation.py +105 -6
constants.py
CHANGED
@@ -36,7 +36,17 @@ REQUIRED_COLUMNS: list[str] = [
|
|
36 |
"vh_protein_sequence",
|
37 |
"vl_protein_sequence",
|
38 |
]
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
# Huggingface API
|
42 |
TOKEN = os.environ.get("HF_TOKEN")
|
|
|
36 |
"vh_protein_sequence",
|
37 |
"vl_protein_sequence",
|
38 |
]
|
39 |
+
# Cross validation
|
40 |
+
CV_COLUMN = "hierarchical_cluster_IgG_isotype_stratified_fold"
|
41 |
+
# Example files
|
42 |
+
EXAMPLE_FILE_DICT = {
|
43 |
+
"GDPa1": "data/example-predictions.csv",
|
44 |
+
"GDPa1_CV": "data/example-predictions-cv.csv",
|
45 |
+
}
|
46 |
+
ANTIBODY_NAMES_DICT = {
|
47 |
+
"GDPa1": pd.read_csv(EXAMPLE_FILE_DICT["GDPa1"])["antibody_name"].tolist(),
|
48 |
+
"GDPa1_CV": pd.read_csv(EXAMPLE_FILE_DICT["GDPa1_CV"])["antibody_name"].tolist(),
|
49 |
+
}
|
50 |
|
51 |
# Huggingface API
|
52 |
TOKEN = os.environ.get("HF_TOKEN")
|
data/example-predictions-cv.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
submit.py
CHANGED
@@ -11,7 +11,12 @@ from constants import API, SUBMISSIONS_REPO
|
|
11 |
from validation import validate_csv_file
|
12 |
|
13 |
|
14 |
-
def make_submission(
|
|
|
|
|
|
|
|
|
|
|
15 |
if user_state is None:
|
16 |
raise gr.Error("You must submit your username to submit a file.")
|
17 |
|
@@ -34,7 +39,7 @@ def make_submission(submitted_file: BinaryIO, user_state, anonymous_state):
|
|
34 |
with path_obj.open("rb") as f_in:
|
35 |
file_content = f_in.read().decode("utf-8")
|
36 |
|
37 |
-
validate_csv_file(file_content)
|
38 |
|
39 |
# write to dataset
|
40 |
filename = f"{submission_id}.json"
|
|
|
11 |
from validation import validate_csv_file
|
12 |
|
13 |
|
14 |
+
def make_submission(
|
15 |
+
submitted_file: BinaryIO,
|
16 |
+
user_state,
|
17 |
+
anonymous_state,
|
18 |
+
submission_type: str = "GDPa1",
|
19 |
+
):
|
20 |
if user_state is None:
|
21 |
raise gr.Error("You must submit your username to submit a file.")
|
22 |
|
|
|
39 |
with path_obj.open("rb") as f_in:
|
40 |
file_content = f_in.read().decode("utf-8")
|
41 |
|
42 |
+
validate_csv_file(file_content, submission_type)
|
43 |
|
44 |
# write to dataset
|
45 |
filename = f"{submission_id}.json"
|
validation.py
CHANGED
@@ -4,8 +4,10 @@ import gradio as gr
|
|
4 |
from constants import (
|
5 |
REQUIRED_COLUMNS,
|
6 |
MINIMAL_NUMBER_OF_ROWS,
|
7 |
-
ANTIBODY_NAMES,
|
8 |
ASSAY_LIST,
|
|
|
|
|
|
|
9 |
)
|
10 |
|
11 |
|
@@ -46,7 +48,90 @@ def validate_csv_can_be_read(file_content: str) -> pd.DataFrame:
|
|
46 |
raise gr.Error(f"β Unexpected error reading CSV file: {str(e)}")
|
47 |
|
48 |
|
49 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
"""
|
51 |
Validate the DataFrame content and structure.
|
52 |
|
@@ -54,18 +139,23 @@ def validate_dataframe(df: pd.DataFrame) -> None:
|
|
54 |
----------
|
55 |
df: pd.DataFrame
|
56 |
The DataFrame to validate.
|
|
|
|
|
57 |
|
58 |
Raises
|
59 |
------
|
60 |
gr.Error: If validation fails
|
61 |
"""
|
|
|
|
|
|
|
62 |
# Required columns should be present
|
63 |
missing_columns = set(REQUIRED_COLUMNS) - set(df.columns)
|
64 |
if missing_columns:
|
65 |
raise gr.Error(f"β Missing required columns: {', '.join(missing_columns)}")
|
66 |
|
67 |
# Should include at least 1 assay column
|
68 |
-
assay_columns =
|
69 |
if len(assay_columns) < 1:
|
70 |
raise gr.Error(
|
71 |
"β CSV should include at least one of the following assay columns: "
|
@@ -96,14 +186,21 @@ def validate_dataframe(df: pd.DataFrame) -> None:
|
|
96 |
)
|
97 |
|
98 |
# All antibody names should be recognizable
|
99 |
-
unrecognized_antibodies = set(df["antibody_name"]) - set(
|
|
|
|
|
100 |
if unrecognized_antibodies:
|
101 |
raise gr.Error(
|
102 |
f"β Found unrecognized antibody names: {', '.join(unrecognized_antibodies)}"
|
103 |
)
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
|
106 |
-
def validate_csv_file(file_content: str) -> None:
|
107 |
"""
|
108 |
Validate the uploaded CSV file.
|
109 |
|
@@ -111,10 +208,12 @@ def validate_csv_file(file_content: str) -> None:
|
|
111 |
----------
|
112 |
file_content: str
|
113 |
The content of the uploaded CSV file.
|
|
|
|
|
114 |
|
115 |
Raises
|
116 |
------
|
117 |
gr.Error: If validation fails
|
118 |
"""
|
119 |
df = validate_csv_can_be_read(file_content)
|
120 |
-
validate_dataframe(df)
|
|
|
4 |
from constants import (
|
5 |
REQUIRED_COLUMNS,
|
6 |
MINIMAL_NUMBER_OF_ROWS,
|
|
|
7 |
ASSAY_LIST,
|
8 |
+
CV_COLUMN,
|
9 |
+
EXAMPLE_FILE_DICT,
|
10 |
+
ANTIBODY_NAMES_DICT,
|
11 |
)
|
12 |
|
13 |
|
|
|
48 |
raise gr.Error(f"β Unexpected error reading CSV file: {str(e)}")
|
49 |
|
50 |
|
51 |
+
def validate_cv_submission(df: pd.DataFrame, submission_type: str = "GDPa1_CV") -> None:
|
52 |
+
"""Validate cross-validation submission"""
|
53 |
+
# Must have CV_COLUMN for CV submissions
|
54 |
+
if CV_COLUMN not in df.columns:
|
55 |
+
raise gr.Error(f"β CV submissions must include a '{CV_COLUMN}' column")
|
56 |
+
|
57 |
+
# Load canonical fold assignments
|
58 |
+
expected_cv_df = pd.read_csv(EXAMPLE_FILE_DICT[submission_type])[
|
59 |
+
["antibody_name", CV_COLUMN]
|
60 |
+
]
|
61 |
+
antibody_check = expected_cv_df.merge(
|
62 |
+
df[["antibody_name", CV_COLUMN]],
|
63 |
+
on="antibody_name",
|
64 |
+
how="left",
|
65 |
+
suffixes=("_expected", "_submitted"),
|
66 |
+
)
|
67 |
+
# All antibodies should be present if using CV
|
68 |
+
missing_antibodies_mask = antibody_check[f"{CV_COLUMN}_submitted"].isna()
|
69 |
+
n_missing_antibodies = missing_antibodies_mask.sum()
|
70 |
+
if n_missing_antibodies > 0:
|
71 |
+
missing_antibodies = (
|
72 |
+
antibody_check[missing_antibodies_mask]["antibody_name"].head(5).tolist()
|
73 |
+
)
|
74 |
+
raise gr.Error(
|
75 |
+
f"β Missing predictions for {n_missing_antibodies} antibodies. Examples: {', '.join(missing_antibodies)}"
|
76 |
+
)
|
77 |
+
# CV fold assignments should match
|
78 |
+
fold_mismatches = antibody_check[
|
79 |
+
antibody_check[f"{CV_COLUMN}_expected"]
|
80 |
+
!= antibody_check[f"{CV_COLUMN}_submitted"]
|
81 |
+
]
|
82 |
+
if len(fold_mismatches) > 0:
|
83 |
+
examples = []
|
84 |
+
for _, row in fold_mismatches.head(3).iterrows():
|
85 |
+
examples.append(
|
86 |
+
f"{row['antibody_name']} (expected fold {row[f'{CV_COLUMN}_expected']}, got {row[f'{CV_COLUMN}_submitted']})"
|
87 |
+
)
|
88 |
+
raise gr.Error(
|
89 |
+
f"β Fold assignments don't match canonical CV folds: {'; '.join(examples)}"
|
90 |
+
)
|
91 |
+
|
92 |
+
# Merge on both columns for assay validation
|
93 |
+
merged_cv_df = expected_cv_df.merge(df, on=["antibody_name", CV_COLUMN], how="left")
|
94 |
+
|
95 |
+
# Check for missing assay predictions
|
96 |
+
assay_columns = get_assay_columns(merged_cv_df)
|
97 |
+
for assay_column in assay_columns:
|
98 |
+
missing_antibodies = merged_cv_df[merged_cv_df[assay_column].isna()][
|
99 |
+
"antibody_name"
|
100 |
+
].unique()
|
101 |
+
if len(missing_antibodies) > 0:
|
102 |
+
raise gr.Error(
|
103 |
+
f"β Missing {assay_column} predictions for {len(missing_antibodies)} antibodies: {', '.join(missing_antibodies[:5])}"
|
104 |
+
)
|
105 |
+
|
106 |
+
# Step 5: Check that submission length matches expected
|
107 |
+
if len(merged_cv_df) != len(expected_cv_df):
|
108 |
+
raise gr.Error(
|
109 |
+
f"β Expected {len(expected_cv_df)} rows, got {len(merged_cv_df)}"
|
110 |
+
)
|
111 |
+
|
112 |
+
|
113 |
+
def validate_full_dataset_submission(df: pd.DataFrame) -> None:
|
114 |
+
"""Validate full dataset submission"""
|
115 |
+
if CV_COLUMN in df.columns:
|
116 |
+
raise gr.Error(
|
117 |
+
f"β Your submission contains a '{CV_COLUMN}' column. "
|
118 |
+
"Please select 'Cross-Validation Predictions' if you want to submit CV results."
|
119 |
+
)
|
120 |
+
|
121 |
+
# All names should be unique (duplicates check from original validation)
|
122 |
+
n_duplicates = df["antibody_name"].duplicated().sum()
|
123 |
+
if n_duplicates > 0:
|
124 |
+
raise gr.Error(
|
125 |
+
f"β Standard submissions should have only one prediction per antibody. Found {n_duplicates} duplicates."
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
def get_assay_columns(df: pd.DataFrame) -> list[str]:
|
130 |
+
"""Get all assay columns from the DataFrame"""
|
131 |
+
return [col for col in df.columns if col in ASSAY_LIST]
|
132 |
+
|
133 |
+
|
134 |
+
def validate_dataframe(df: pd.DataFrame, submission_type: str = "GDPa1") -> None:
|
135 |
"""
|
136 |
Validate the DataFrame content and structure.
|
137 |
|
|
|
139 |
----------
|
140 |
df: pd.DataFrame
|
141 |
The DataFrame to validate.
|
142 |
+
submission_type: str
|
143 |
+
Type of submission: "GDPa1" or "GDPa1_CV"
|
144 |
|
145 |
Raises
|
146 |
------
|
147 |
gr.Error: If validation fails
|
148 |
"""
|
149 |
+
if submission_type not in EXAMPLE_FILE_DICT.keys():
|
150 |
+
raise ValueError(f"Invalid submission type: {submission_type}")
|
151 |
+
|
152 |
# Required columns should be present
|
153 |
missing_columns = set(REQUIRED_COLUMNS) - set(df.columns)
|
154 |
if missing_columns:
|
155 |
raise gr.Error(f"β Missing required columns: {', '.join(missing_columns)}")
|
156 |
|
157 |
# Should include at least 1 assay column
|
158 |
+
assay_columns = get_assay_columns(df)
|
159 |
if len(assay_columns) < 1:
|
160 |
raise gr.Error(
|
161 |
"β CSV should include at least one of the following assay columns: "
|
|
|
186 |
)
|
187 |
|
188 |
# All antibody names should be recognizable
|
189 |
+
unrecognized_antibodies = set(df["antibody_name"]) - set(
|
190 |
+
ANTIBODY_NAMES_DICT[submission_type]
|
191 |
+
)
|
192 |
if unrecognized_antibodies:
|
193 |
raise gr.Error(
|
194 |
f"β Found unrecognized antibody names: {', '.join(unrecognized_antibodies)}"
|
195 |
)
|
196 |
+
# Submission-type specific validation
|
197 |
+
if submission_type.endswith("_CV"):
|
198 |
+
validate_cv_submission(df, submission_type)
|
199 |
+
else: # full_dataset
|
200 |
+
validate_full_dataset_submission(df)
|
201 |
|
202 |
|
203 |
+
def validate_csv_file(file_content: str, submission_type: str = "GDPa1") -> None:
|
204 |
"""
|
205 |
Validate the uploaded CSV file.
|
206 |
|
|
|
208 |
----------
|
209 |
file_content: str
|
210 |
The content of the uploaded CSV file.
|
211 |
+
submission_type: str
|
212 |
+
Type of submission: "standard" or "cv"
|
213 |
|
214 |
Raises
|
215 |
------
|
216 |
gr.Error: If validation fails
|
217 |
"""
|
218 |
df = validate_csv_can_be_read(file_content)
|
219 |
+
validate_dataframe(df, submission_type)
|