import pandas as pd from datasets import load_dataset import gradio as gr import hashlib from typing import Iterable, Union from constants import RESULTS_REPO, ASSAY_RENAME, LEADERBOARD_RESULTS_COLUMNS pd.set_option("display.max_columns", None) def show_output_box(message): return gr.update(value=message, visible=True) def anonymize_user(username: str) -> str: # Anonymize using a hash of the username return hashlib.sha256(username.encode()).hexdigest()[:8] def fetch_hf_results(): # load_dataset should cache by default if not using force_redownload df = load_dataset( RESULTS_REPO, data_files="auto_submissions/metrics_all.csv", )["train"].to_pandas() assert all( col in df.columns for col in LEADERBOARD_RESULTS_COLUMNS ), f"Expected columns {LEADERBOARD_RESULTS_COLUMNS} not found in {df.columns}. Missing columns: {set(LEADERBOARD_RESULTS_COLUMNS) - set(df.columns)}" # Show latest submission only df = df.sort_values("submission_time", ascending=False).drop_duplicates( subset=["model", "assay", "user"], keep="first" ) df["property"] = df["assay"].map(ASSAY_RENAME) # Anonymize the user column at this point df.loc[df["anonymous"] != False, "user"] = "anon-" + df.loc[df["anonymous"] != False, "user"].apply(readable_hash) return df # Readable hashing function similar to coolname or codenamize ADJECTIVES = [ "ancient","brave","calm","clever","crimson","curious","dapper","eager", "fuzzy","gentle","glowing","golden","happy","icy","jolly","lucky", "magical","mellow","nimble","peachy","quick","royal","shiny","silent", "sly","sparkly","spicy","spry","sturdy","sunny","swift","tiny","vivid", "witty" ] ANIMALS = [ "ant","bat","bear","bee","bison","boar","bug","cat","crab","crow", "deer","dog","duck","eel","elk","fox","frog","goat","gull","hare", "hawk","hen","horse","ibis","kid","kiwi","koala","lamb","lark","lemur", "lion","llama","loon","lynx","mole","moose","mouse","newt","otter","owl", "ox","panda","pig","prawn","puma","quail","quokka","rabbit","rat","ray", "robin","seal","shark","sheep","shrew","skunk","slug","snail","snake", "swan","toad","trout","turtle","vole","walrus","wasp","whale","wolf", "worm","yak","zebra" ] NOUNS = [ "rock","sand","star","tree","leaf","seed","stone","cloud","rain","snow", "wind","fire","ash","dirt","mud","ice","wave","shell","dust","sun", "moon","hill","lake","pond","reef","root","twig","wood" ] def readable_hash( data: Union[str, bytes, Iterable[int]], *, salt: Union[str, bytes, None] = None, words: tuple[list[str], list[str]] = (ADJECTIVES, ANIMALS + NOUNS), sep: str = "-", checksum_len: int = 2, # 0 to disable; 2–3 is plenty case: str = "lower", # "lower" | "title" | "upper" ) -> str: """ Deterministically map input data to 'adjective-animal[-checksum]'. Generated using ChatGPT. Examples -------- >>> readable_hash("hello world") 'magical-panda-6h' >>> readable_hash("hello world", salt="my-app-v1", checksum_len=3) 'royal-otter-1pz' >>> readable_hash(b"\x00\x01\x02\x03", case="title", checksum_len=0) 'Fuzzy-Tiger' Vocabulary ---------- ADJECTIVES: ~160 safe, descriptive words (e.g. "ancient", "brave", "silent", "swift") ANIMALS: ~80 short, common animals (e.g. "dog", "owl", "whale", "tiger") NOUNS: optional set of ~30 neutral nouns (e.g. "rock", "star", "tree", "cloud") Combinations ------------ - adjective + animal: ~13,000 unique names - adjective + noun: ~5,000 unique names - adjective + animal + noun: ~390,000 unique names Checksum -------- An optional short base-36 suffix (e.g. "-6h" or "-1pz"). The checksum acts as a disambiguator in case two different inputs map to the same word combination. With 2-3 characters, collisions become vanishingly rare. If you only need fun, human-readable names, you can disable it by setting ``checksum_len=0``. If you need unique, stable identifiers, keep it enabled. """ if isinstance(data, str): data = data.encode() elif isinstance(data, Iterable) and not isinstance(data, (bytes, bytearray)): data = bytes(data) h = hashlib.blake2b(digest_size=8) # fast, stable, short digest if salt: h.update(salt.encode() if isinstance(salt, str) else salt) h.update(b"\x00") # domain-separate salt from data h.update(data) digest = h.digest() # Use the first 6 bytes to index words; last bytes for checksum n1 = int.from_bytes(digest[0:3], "big") n2 = int.from_bytes(digest[3:6], "big") adj = words[0][n1 % len(words[0])] noun = words[1][n2 % len(words[1])] phrase = f"{adj}{sep}{noun}" if checksum_len > 0: # Short base36 checksum for collision visibility cs = int.from_bytes(digest[6:], "big") base36 = "" alphabet = "0123456789abcdefghijklmnopqrstuvwxyz" while cs: cs, r = divmod(cs, 36) base36 = alphabet[r] + base36 base36 = (base36 or "0")[:checksum_len] phrase = f"{phrase}{sep}{base36}" if case == "title": phrase = sep.join(p.capitalize() for p in phrase.split(sep)) elif case == "upper": phrase = phrase.upper() return phrase