from datetime import datetime, timezone, timedelta import pandas as pd from datasets import load_dataset import gradio as gr from constants import RESULTS_REPO, ASSAY_RENAME, LEADERBOARD_RESULTS_COLUMNS pd.set_option('display.max_columns', None) def show_output_box(message): return gr.update(value=message, visible=True) def fetch_hf_results(): # Print current time in EST EST = timezone(timedelta(hours=-4)) print(f"tmp: Fetching results from HF at {datetime.now(EST)}") # Should cache by default if not using force_redownload df = load_dataset( RESULTS_REPO, data_files="auto_submissions/metrics_all.csv", )["train"].to_pandas() assert all(col in df.columns for col in LEADERBOARD_RESULTS_COLUMNS), f"Expected columns {LEADERBOARD_RESULTS_COLUMNS} not found in {df.columns}. Missing columns: {set(LEADERBOARD_COLUMNS) - set(df.columns)}" # Show latest submission only df = df.sort_values("submission_time", ascending=False).drop_duplicates(subset=["model", "assay"], keep="first") df["property"] = df["assay"].map(ASSAY_RENAME) return df