Spaces:
Running
Running
| import os | |
| import yaml | |
| YAML_PATH = "./cicd/configs" | |
| LOG_FILE = "temp_log" | |
| class Dumper(yaml.Dumper): | |
| def increase_indent(self, flow=False, *args, **kwargs): | |
| return super().increase_indent(flow=flow, indentless=False) | |
| def get_yaml_path(uid): | |
| if not os.path.exists(YAML_PATH): | |
| os.makedirs(YAML_PATH) | |
| if not os.path.exists(f"{YAML_PATH}/{uid}_config.yaml"): | |
| os.system(f"cp config.yaml {YAML_PATH}/{uid}_config.yaml") | |
| return f"{YAML_PATH}/{uid}_config.yaml" | |
| # read scanners from yaml file | |
| # return a list of scanners | |
| def read_scanners(uid): | |
| scanners = [] | |
| with open(get_yaml_path(uid), "r") as f: | |
| config = yaml.load(f, Loader=yaml.FullLoader) | |
| scanners = config.get("detectors", []) | |
| return scanners | |
| # convert a list of scanners to yaml file | |
| def write_scanners(scanners, uid): | |
| with open(get_yaml_path(uid), "r") as f: | |
| config = yaml.load(f, Loader=yaml.FullLoader) | |
| if config: | |
| config["detectors"] = scanners | |
| # save scanners to detectors in yaml | |
| with open(get_yaml_path(uid), "w") as f: | |
| yaml.dump(config, f, Dumper=Dumper) | |
| # read model_type from yaml file | |
| def read_inference_type(uid): | |
| inference_type = "" | |
| with open(get_yaml_path(uid), "r") as f: | |
| config = yaml.load(f, Loader=yaml.FullLoader) | |
| inference_type = config.get("inference_type", "") | |
| return inference_type | |
| # write model_type to yaml file | |
| def write_inference_type(use_inference, inference_token, uid): | |
| with open(get_yaml_path(uid), "r") as f: | |
| config = yaml.load(f, Loader=yaml.FullLoader) | |
| if use_inference: | |
| config["inference_type"] = "hf_inference_api" | |
| config["inference_token"] = inference_token | |
| else: | |
| config["inference_type"] = "hf_pipeline" | |
| # FIXME: A quick and temp fix for missing token | |
| config["inference_token"] = "" | |
| # save inference_type to inference_type in yaml | |
| with open(get_yaml_path(uid), "w") as f: | |
| yaml.dump(config, f, Dumper=Dumper) | |
| # read column mapping from yaml file | |
| def read_column_mapping(uid): | |
| column_mapping = {} | |
| with open(get_yaml_path(uid), "r") as f: | |
| config = yaml.load(f, Loader=yaml.FullLoader) | |
| if config: | |
| column_mapping = config.get("column_mapping", dict()) | |
| if column_mapping is None: | |
| column_mapping = {} | |
| return column_mapping | |
| # write column mapping to yaml file | |
| def write_column_mapping(mapping, uid): | |
| with open(get_yaml_path(uid), "r") as f: | |
| config = yaml.load(f, Loader=yaml.FullLoader) | |
| if config is None: | |
| return | |
| if mapping is None and "column_mapping" in config.keys(): | |
| del config["column_mapping"] | |
| else: | |
| config["column_mapping"] = mapping | |
| with open(get_yaml_path(uid), "w") as f: | |
| # yaml Dumper will by default sort the keys | |
| yaml.dump(config, f, Dumper=Dumper, sort_keys=False) | |
| # convert column mapping dataframe to json | |
| def convert_column_mapping_to_json(df, label=""): | |
| column_mapping = {} | |
| column_mapping[label] = [] | |
| for _, row in df.iterrows(): | |
| column_mapping[label].append(row.tolist()) | |
| return column_mapping | |
| def get_log_file_with_uid(uid): | |
| try: | |
| print(f"Loading {uid}.log") | |
| with open(f"./tmp/{uid}.log", "a") as file: | |
| return file.read() | |
| except Exception: | |
| return "Log file does not exist" | |
| def get_logs_file(): | |
| try: | |
| with open(LOG_FILE, "r") as file: | |
| return file.read() | |
| except Exception: | |
| return "Log file does not exist" | |
| def write_log_to_user_file(task_id, log): | |
| with open(f"./tmp/{task_id}.log", "a") as f: | |
| f.write(log) | |