File size: 10,798 Bytes
1da1c98 cc5bd12 1da1c98 b1fc4cc 1da1c98 b1fc4cc 1da1c98 b1fc4cc 1da1c98 cc5bd12 1da1c98 cc5bd12 1da1c98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import os
import json
import dimcli
import pandas as pd
import plotly.express as px
import streamlit as st
import scholarpy
import leafmap.foliumap as leafmap
import datetime
current_year = datetime.datetime.now().year
if "dsl" not in st.session_state:
st.session_state["dsl"] = scholarpy.Dsl()
# create output data folder
FOLDER_NAME = "data"
if not (os.path.exists(FOLDER_NAME)):
os.mkdir(FOLDER_NAME)
def save(df, filename_dot_csv):
df.to_csv(FOLDER_NAME + "/" + filename_dot_csv, index=False)
def read(filename_dot_csv):
df = pd.read_csv(FOLDER_NAME + "/" + filename_dot_csv)
return df
@st.cache_data
def get_token():
return os.environ.get("DIM_TOKEN")
@st.cache_data
def get_journals():
with open("data/journals.json") as f:
journals = json.load(f)
return journals
@st.cache_data
def read_excel(sheet_name):
df = pd.read_excel(
"data/journals.xlsx", sheet_name=sheet_name, index_col=False, engine="openpyxl"
)
df.set_index("Rank", inplace=True)
return df
def app():
st.title("Search Journals")
dsl = st.session_state["dsl"]
search_type = st.radio(
"Select a search type",
["Search by journal title", "List Google Scholar journal categories"],
)
if search_type == "Search by journal title":
row1_col1, row1_col2, row1_col3, _ = st.columns([1, 1, 2, 1])
with row1_col1:
name = st.text_input("Enter a journal title")
with row1_col2:
exact_match = st.checkbox("Exact match")
with row1_col3:
options = [
"book",
"book_series",
"proceeding",
"journal",
"preprint_platform",
]
types = st.multiselect(
"Select journal types", options, ["journal", "book_series"]
)
if name:
result = dsl.search_journal_by_title(name, exact_match=exact_match)
if result is not None:
titles = result.as_dataframe()
titles = titles[titles["type"].isin(types)]
titles.sort_values("title", inplace=True)
else:
titles = pd.DataFrame()
# titles = titles.astype({"start_year": int})
if not titles.empty:
markdown = f"""
Returned Journals: {len(titles)}
"""
st.markdown(markdown)
st.dataframe(titles)
titles["uid"] = (
titles["id"] + " | " + titles["type"] + " | " + titles["title"]
)
row2_col1, row2_col2, row2_col3, row2_col4, row2_col5 = st.columns(
[2.4, 1, 0.6, 1, 1]
)
with row2_col1:
title = st.selectbox(
"Select a journal title", titles["uid"].values.tolist()
)
with row2_col2:
keyword = st.text_input("Enter a keyword to search for")
with row2_col3:
exact_match = st.checkbox("Exact match", True)
with row2_col4:
scope = st.selectbox(
"Select a search scope",
[
"authors",
"concepts",
"full_data",
"full_data_exact",
"title_abstract_only",
"title_only",
],
index=5,
)
with row2_col5:
years = st.slider(
"Select the start and end year:",
1950,
current_year,
(1980, current_year),
)
if title:
journal_id = title.split(" | ")[0]
if keyword:
pubs = dsl.search_pubs_by_keyword(
keyword, exact_match, scope, years[0], years[1], journal_id
)
else:
pubs = dsl.search_pubs_by_journal_id(
journal_id, years[0], years[1]
)
pubs_df = pubs.as_dataframe()
if pubs_df is not None and (not pubs_df.empty):
st.write(
f"Total number of pulications: {pubs.count_total:,}. Display {min(pubs.count_total, 1000)} publications below."
)
try:
st.dataframe(pubs_df)
except Exception as e:
st.dataframe(scholarpy.json_to_df(pubs))
# st.error("An error occurred: " + str(e))
leafmap.st_download_button(
"Download data", pubs_df, csv_sep="\t"
)
else:
st.text("No results found")
elif search_type == "List Google Scholar journal categories":
st.markdown(
"""
The journal categories are adopted from [Google Scholar](https://scholar.google.com/citations?view_op=top_venues&hl=en&inst=9897619243961157265).
See the list of journals [here](https://docs.google.com/spreadsheets/d/1uCEi3TsJCWl9QEZimvjlM8wjt7hNq3QvMqHGeT44HXQ/edit?usp=sharing).
"""
)
st.session_state["orcids"] = None
# dsl = st.session_state["dsl"]
# token = get_token()
# dimcli.login(key=token, endpoint="https://app.dimensions.ai")
# dsl = dimcli.Dsl()
categories = get_journals()
row1_col1, row1_col2, _, row1_col3 = st.columns([1, 1, 0.05, 1])
with row1_col1:
category = st.selectbox("Select a category:", categories.keys())
if category:
with row1_col2:
journal = st.selectbox("Select a journal:", categories[category].keys())
with row1_col3:
years = st.slider(
"Select the start and end year:",
1950,
current_year,
(1980, current_year),
)
if journal:
pubs = read_excel(sheet_name=category)
with st.expander("Show journal metrics"):
st.dataframe(pubs)
journal_id = categories[category][journal]
if journal_id is not None and str(journal_id).startswith("jour"):
q_template = """search publications where
journal.id="{}" and
year>={} and
year<={}
return publications[id+title+doi+year+authors+type+pages+journal+issue+volume+altmetric+times_cited]
limit 1000"""
q = q_template.format(journal_id, years[0], years[1])
else:
q_template = """search publications where
journal.title="{}" and
year>={} and
year<={}
return publications[id+title+doi+year+authors+type+pages+journal+issue+volume+altmetric+times_cited]
limit 1000"""
q = q_template.format(journal, years[0], years[1])
pubs = dsl.query(q)
if pubs.count_total > 0:
st.header("Publications")
st.write(
f"Total number of pulications: {pubs.count_total:,}. Display 1,000 publications below."
)
df_pubs = pubs.as_dataframe()
save(df_pubs, "publications.csv")
df_pubs = read("publications.csv")
st.dataframe(df_pubs)
st.header("Authors")
authors = pubs.as_dataframe_authors()
st.write(
f"Total number of authors of the 1,000 pubs shown above: {authors.shape[0]:,}"
)
save(authors, "authors.csv")
df_authors = read("authors.csv")
st.dataframe(df_authors)
df_authors_orcid = df_authors[~df_authors["orcid"].isna()]
# st.dataframe(df_authors_orcid)
orcids = list(set(df_authors_orcid["orcid"].values.tolist()))
orcids = [i[2:21] for i in orcids]
orcids.sort()
# st.write(orcids)
st.session_state["orcids"] = orcids
st.header("Affiliations")
affiliations = pubs.as_dataframe_authors_affiliations()
st.write(
f"Total number of affiliations of the 1,000 pubs shown above: {affiliations.shape[0]:,}"
)
save(affiliations, "affiliations.csv")
df_affiliations = read("affiliations.csv")
st.dataframe(df_affiliations)
researchers = authors.query("researcher_id!=''")
#
df_researchers = pd.DataFrame(
{
"measure": [
"Authors in total (non unique)",
"Authors with a researcher ID",
"Authors with a researcher ID (unique)",
],
"count": [
len(authors),
len(researchers),
researchers["researcher_id"].nunique(),
],
}
)
fig_researchers = px.bar(
df_researchers,
x="measure",
y="count",
title=f"Author Research ID stats for {journal} ({years[0]}-{years[1]})",
)
orcids = authors.query("orcid!=''")
#
df_orcids = pd.DataFrame(
{
"measure": [
"Authors in total (non unique)",
"Authors with a ORCID",
"Authors with a ORCID (unique)",
],
"count": [
len(authors),
len(orcids),
orcids["orcid"].nunique(),
],
}
)
fig_orcids = px.bar(
df_orcids,
x="measure",
y="count",
title=f"Author ORCID stats for {journal} ({years[0]}-{years[1]})",
)
st.header("Stats")
row2_col1, row1_col2 = st.columns(2)
with row2_col1:
st.plotly_chart(fig_researchers)
with row1_col2:
st.plotly_chart(fig_orcids)
else:
st.warning("No publications found")
|