scholar / apps /organization.py
giswqs's picture
Update year
cc5bd12
raw
history blame
6.43 kB
import os
import scholarpy
import pandas as pd
import streamlit as st
import leafmap.foliumap as leafmap
import plotly.express as px
import datetime
current_year = datetime.datetime.now().year
if "dsl" not in st.session_state:
st.session_state["dsl"] = scholarpy.Dsl()
def app():
st.title("Search Organizations")
dsl = st.session_state["dsl"]
row1_col1, row1_col2 = st.columns([1, 1])
with row1_col1:
name = st.text_input("Enter an organization name:", "")
if name:
orgs = dsl.search_org_by_name(name, exact_match=False, return_list=True)
if orgs is not None:
with row1_col1:
selected_org = st.selectbox("Select a organization id:", orgs)
org_id = selected_org.split("|")[0].strip()
id_info = dsl.search_org_by_id(org_id)
info_df = scholarpy.json_to_df(id_info, transpose=True)
info_df.rename(
columns={info_df.columns[0]: "Type", info_df.columns[1]: "Value"},
inplace=True,
)
with row1_col1:
st.header("Organization Information")
if not info_df.empty:
st.dataframe(info_df)
leafmap.st_download_button(
"Download data", info_df, csv_sep="\t"
)
else:
st.text("No information found")
with row1_col2:
years = st.slider(
"Select the start and end year:",
1950,
current_year + 6,
(1980, current_year),
)
st.header("Publications by year")
pubs, fig = dsl.org_pubs_annual_stats(
org_id, start_year=years[0], end_year=years[1], return_plot=True
)
st.text(f'Total number of publications: {pubs["count"].sum():,}')
if fig is not None:
st.plotly_chart(fig)
leafmap.st_download_button(
"Download data",
pubs,
file_name="data.csv",
csv_sep="\t",
)
else:
st.text("No publications found")
with row1_col1:
st.header("Top funders")
funder_count = st.slider(
"Select the number of funders:", 1, 100, 20
)
funders, fig = dsl.org_grant_funders(
org_id, limit=funder_count, return_plot=True
)
st.text(f'Total funding amount: ${funders["funding"].sum():,}')
if fig is not None:
st.plotly_chart(fig)
leafmap.st_download_button(
"Download data",
funders,
file_name="data.csv",
csv_sep="\t",
)
else:
st.text("No funders found")
with row1_col2:
st.header("The number of grants by year")
grants, fig_count, fig_amount = dsl.org_grants_annual_stats(
org_id, start_year=years[0], end_year=years[1], return_plot=True
)
st.plotly_chart(fig_count)
st.plotly_chart(fig_amount)
leafmap.st_download_button(
"Download data",
grants,
file_name="data.csv",
csv_sep="\t",
)
with row1_col1:
st.header("List of grants")
st.text("Only the first 1000 grants are shown")
result = dsl.search_grants_by_org(
org_id, start_year=years[0], end_year=years[1]
)
df = result.as_dataframe()
if not df.empty:
st.dataframe(df)
leafmap.st_download_button(
"Download data", df, file_name="data.csv", csv_sep="\t"
)
with row1_col1:
st.header("Publications most cited in last 2 years")
result = dsl.org_pubs_most_cited(org_id, recent=True, limit=100)
df = scholarpy.json_to_df(result, transpose=False)
if not df.empty:
st.dataframe(df)
leafmap.st_download_button(
"Download data", df, file_name="data.csv", csv_sep="\t"
)
with row1_col2:
st.header("Publications most cited - all time")
result = dsl.org_pubs_most_cited(org_id, recent=False, limit=100)
df = scholarpy.json_to_df(result, transpose=False)
if not df.empty:
st.dataframe(df)
leafmap.st_download_button(
"Download data", df, file_name="data.csv", csv_sep="\t"
)
df, area_fig, journal_fig = dsl.org_pubs_top_areas(
org_id, return_plot=True
)
if not df.empty:
with row1_col1:
st.header("Research areas of most cited publications")
st.plotly_chart(area_fig)
# leafmap.st_download_button(
# "Download data", df, file_name="data.csv", csv_sep="\t"
# )
with row1_col2:
st.header("Journals of most cited publications")
st.plotly_chart(journal_fig)
leafmap.st_download_button(
"Download data", df, file_name="data.csv", csv_sep="\t"
)
else:
st.text("No organizations found")