dt / app /translate /gptpdf备份.py
gitdeem's picture
Upload 96 files
4e9efe9 verified
import os
import re
from typing import List, Tuple, Optional, Dict
import logging
import threading
# from . import to_translate
import datetime
from . import common, to_translate
import time
import fitz # PyMuPDF
import shapely.geometry as sg
from shapely.geometry.base import BaseGeometry
from shapely.validation import explain_validity
import markdown
import pdfkit
import codecs
# from weasyprint import HTML
from pymdownx import superfences
from bs4 import BeautifulSoup
from PIL import Image
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# This Default Prompt Using Chinese and could be changed to other languages.
DEFAULT_PROMPT = """使用markdown语法,将图片中识别到的文字转换为markdown格式输出。你必须做到:
1. 输出和使用识别到的图片的相同的语言,例如,识别到英语的字段,输出的内容必须是英语。
2. 不要解释和输出无关的文字,直接输出图片中的内容。例如,严禁输出 “以下是我根据图片内容生成的markdown文本:”这样的例子,而是应该直接输出markdown。
3. 内容不要包含在```markdown ```中、段落公式使用 $$ $$ 的形式、行内公式使用 $ $ 的形式、忽略掉长直线、忽略掉页码。
再次强调,不要解释和输出无关的文字,直接输出图片中的内容。
"""
DEFAULT_RECT_PROMPT = """图片中用红色框和名称(%s)标注出了一些区域。如果区域是表格或者图片,使用 ![]() 的形式插入到输出内容中,否则直接输出文字内容。
"""
DEFAULT_ROLE_PROMPT = """你是一个PDF文档解析器,使用markdown和latex语法输出图片的内容。
"""
def _is_near(rect1: BaseGeometry, rect2: BaseGeometry, distance: float = 20) -> bool:
"""
Check if two rectangles are near each other if the distance between them is less than the target.
"""
return rect1.buffer(0.1).distance(rect2.buffer(0.1)) < distance
def _is_horizontal_near(rect1: BaseGeometry, rect2: BaseGeometry, distance: float = 100) -> bool:
"""
Check if two rectangles are near horizontally if one of them is a horizontal line.
"""
result = False
if abs(rect1.bounds[3] - rect1.bounds[1]) < 0.1 or abs(rect2.bounds[3] - rect2.bounds[1]) < 0.1:
if abs(rect1.bounds[0] - rect2.bounds[0]) < 0.1 and abs(rect1.bounds[2] - rect2.bounds[2]) < 0.1:
result = abs(rect1.bounds[3] - rect2.bounds[3]) < distance
return result
def _union_rects(rect1: BaseGeometry, rect2: BaseGeometry) -> BaseGeometry:
"""
Union two rectangles.
"""
return sg.box(*(rect1.union(rect2).bounds))
def _merge_rects(rect_list: List[BaseGeometry], distance: float = 20, horizontal_distance: Optional[float] = None) -> \
List[BaseGeometry]:
"""
Merge rectangles in the list if the distance between them is less than the target.
"""
merged = True
while merged:
merged = False
new_rect_list = []
while rect_list:
rect = rect_list.pop(0)
for other_rect in rect_list:
if _is_near(rect, other_rect, distance) or (
horizontal_distance and _is_horizontal_near(rect, other_rect, horizontal_distance)):
rect = _union_rects(rect, other_rect)
rect_list.remove(other_rect)
merged = True
new_rect_list.append(rect)
rect_list = new_rect_list
return rect_list
def _adsorb_rects_to_rects(source_rects: List[BaseGeometry], target_rects: List[BaseGeometry], distance: float = 10) -> \
Tuple[List[BaseGeometry], List[BaseGeometry]]:
"""
Adsorb a set of rectangles to another set of rectangles.
"""
new_source_rects = []
for text_area_rect in source_rects:
adsorbed = False
for index, rect in enumerate(target_rects):
if _is_near(text_area_rect, rect, distance):
rect = _union_rects(text_area_rect, rect)
target_rects[index] = rect
adsorbed = True
break
if not adsorbed:
new_source_rects.append(text_area_rect)
return new_source_rects, target_rects
def _parse_rects(page: fitz.Page) -> List[Tuple[float, float, float, float]]:
"""
Parse drawings in the page and merge adjacent rectangles.
"""
# 提取画的内容
drawings = page.get_drawings()
# 忽略掉长度小于30的水平直线
is_short_line = lambda x: abs(x['rect'][3] - x['rect'][1]) < 1 and abs(x['rect'][2] - x['rect'][0]) < 30
drawings = [drawing for drawing in drawings if not is_short_line(drawing)]
# 转换为shapely的矩形
rect_list = [sg.box(*drawing['rect']) for drawing in drawings]
# 提取图片区域
images = page.get_image_info()
image_rects = [sg.box(*image['bbox']) for image in images]
# 合并drawings和images
rect_list += image_rects
merged_rects = _merge_rects(rect_list, distance=10, horizontal_distance=100)
merged_rects = [rect for rect in merged_rects if explain_validity(rect) == 'Valid Geometry']
# 将大文本区域和小文本区域分开处理: 大文本相小合并,小文本靠近合并
is_large_content = lambda x: (len(x[4]) / max(1, len(x[4].split('\n')))) > 5
small_text_area_rects = [sg.box(*x[:4]) for x in page.get_text('blocks') if not is_large_content(x)]
large_text_area_rects = [sg.box(*x[:4]) for x in page.get_text('blocks') if is_large_content(x)]
_, merged_rects = _adsorb_rects_to_rects(large_text_area_rects, merged_rects, distance=0.1) # 完全相交
_, merged_rects = _adsorb_rects_to_rects(small_text_area_rects, merged_rects, distance=5) # 靠近
# 再次自身合并
merged_rects = _merge_rects(merged_rects, distance=10)
# 过滤比较小的矩形
merged_rects = [rect for rect in merged_rects if rect.bounds[2] - rect.bounds[0] > 20 and rect.bounds[3] - rect.bounds[1] > 20]
return [rect.bounds for rect in merged_rects]
def _parse_pdf_to_images(pdf_path: str, output_dir: str = './') -> List[Tuple[str, List[str]]]:
"""
Parse PDF to images and save to output_dir.
"""
# 打开PDF文件
pdf_document = fitz.open(pdf_path)
image_infos = []
for page_index, page in enumerate(pdf_document):
logging.info(f'parse page: {page_index}')
rect_images = []
rects = _parse_rects(page)
for index, rect in enumerate(rects):
fitz_rect = fitz.Rect(rect)
# 保存页面为图片
pix = page.get_pixmap(clip=fitz_rect, matrix=fitz.Matrix(4, 4))
name = f'{page_index}_{index}.png'
pix.save(os.path.join(output_dir, name))
rect_images.append(name)
# # 在页面上绘制红色矩形
big_fitz_rect = fitz.Rect(fitz_rect.x0 - 1, fitz_rect.y0 - 1, fitz_rect.x1 + 1, fitz_rect.y1 + 1)
# 空心矩形
page.draw_rect(big_fitz_rect, color=(1, 0, 0), width=1)
# 画矩形区域(实心)
# page.draw_rect(big_fitz_rect, color=(1, 0, 0), fill=(1, 0, 0))
# 在矩形内的左上角写上矩形的索引name,添加一些偏移量
text_x = fitz_rect.x0 + 2
text_y = fitz_rect.y0 + 10
text_rect = fitz.Rect(text_x, text_y - 9, text_x + 80, text_y + 2)
# 绘制白色背景矩形
page.draw_rect(text_rect, color=(1, 1, 1), fill=(1, 1, 1))
# 插入带有白色背景的文字
page.insert_text((text_x, text_y), name, fontsize=10, color=(1, 0, 0))
page_image_with_rects = page.get_pixmap(matrix=fitz.Matrix(3, 3))
page_image = os.path.join(output_dir, f'{page_index}.png')
page_compress_image = os.path.join(output_dir, f'{page_index}-compress.png')
page_image_with_rects.save(page_image)
compress_image(page_image,page_compress_image)
# image_infos.append((page_image, rect_images))
image_infos.append({'text': page_image,'type':'pdf_img', 'complete': False, 'content': ''})
pdf_document.close()
return image_infos
def _gpt_parse_images(
image_infos: List[Tuple[str, List[str]]],
prompt_dict: Optional[Dict] = None,
**args
) -> str:
"""
Parse images to markdown content.
"""
if isinstance(prompt_dict, dict) and 'prompt' in prompt_dict:
prompt = prompt_dict['prompt']
logging.info("prompt is provided, using user prompt.")
else:
prompt = DEFAULT_PROMPT
logging.info("prompt is not provided, using default prompt.")
if isinstance(prompt_dict, dict) and 'rect_prompt' in prompt_dict:
rect_prompt = prompt_dict['rect_prompt']
logging.info("rect_prompt is provided, using user prompt.")
else:
rect_prompt = DEFAULT_RECT_PROMPT
logging.info("rect_prompt is not provided, using default prompt.")
if isinstance(prompt_dict, dict) and 'role_prompt' in prompt_dict:
role_prompt = prompt_dict['role_prompt']
logging.info("role_prompt is provided, using user prompt.")
else:
role_prompt = DEFAULT_ROLE_PROMPT
logging.info("role_prompt is not provided, using default prompt.")
for image_index,image_info in enumerate(image_infos):
user_prompt = prompt
# if rect_images:
# user_prompt += rect_prompt + ', '.join(rect_images)
image_infos[image_index]['user_prompt']=user_prompt
# output_path = os.path.join(output_dir, 'output.md')
# with open(output_path, 'w', encoding='utf-8') as f:
# f.write('\n\n'.join(contents))
# return '\n\n'.join(contents)
def start(trans):
# 从 trans 中获取文件路径和输出目录
pdf_path = trans['file_path']
output_dir = trans['target_path_dir']
# 允许的最大线程
threads = trans.get('threads', 10)
max_threads = max(1, int(threads))
# 当前执行的索引位置
run_index = 0
start_time = datetime.datetime.now()
# 解析 PDF 文件
image_infos = _parse_pdf_to_images(pdf_path, output_dir=output_dir)
_gpt_parse_images(
image_infos=image_infos,
prompt_dict=None,
)
trans['role_prompt']=DEFAULT_ROLE_PROMPT
# 使用 threading 方式处理
max_run = min(max_threads, len(image_infos))
before_active_count = threading.activeCount()
event = threading.Event()
while run_index <= len(image_infos) - 1:
if threading.activeCount() < max_run + before_active_count:
if not event.is_set():
thread = threading.Thread(target=to_translate.get, args=(trans, event, image_infos, run_index))
thread.start()
run_index += 1
else:
return False
while True:
complete = True
for image_info in image_infos:
if not image_info['complete']:
complete = False
if complete:
break
else:
time.sleep(1)
# print(image_infos)
# 处理完成后,写入结果
try:
# c = canvas.Canvas(trans['target_file'], pagesize=letter)
# text = c.beginText(40, 750) # 设置文本开始的位置
# text.setFont("Helvetica", 12) # 设置字体和大小
md_file = os.path.join(output_dir, 'output.md')
with open(md_file, 'w', encoding='utf-8') as file:
for image_info in image_infos:
# text.textLine(image_info['text']) # 添加文本行
# text.textLine("") # 添加空行作为分隔
# write_pdf(c, image_info['text']);
file.write(image_info['text'] + '\n')
# write_to_pdf(md_file, trans['target_file'])
html_to_pdf(output_dir, md_file, trans['target_file'])
# c.save() # 保存 PDF 文件
except Exception as e:
print(f"生成pdf失败: {md_file}: {e}")
return False
end_time = datetime.datetime.now()
spend_time = common.display_spend(start_time, end_time)
# translate.complete(trans, len(image_infos), spend_time)
return True
def compress_image(image_file,compress_image_file):
img=Image.open(image_file)
img_resized=img.resize((img.width//2, img.height//2), resample=Image.Resampling.NEAREST)
img_resized.save(compress_image_file,quality=30)
def html_to_pdf(output_dir, md_file, pdf_file):
extensions = [
'toc', # 目录,[toc]
'extra', # 缩写词、属性列表、释义列表、围栏式代码块、脚注、在HTML的Markdown、表格
]
third_party_extensions = [
'mdx_math', # KaTeX数学公式,$E=mc^2$和$$E=mc^2$$
'markdown_checklist.extension', # checklist,- [ ]和- [x]
'pymdownx.magiclink', # 自动转超链接,
'pymdownx.caret', # 上标下标,
'pymdownx.superfences', # 多种块功能允许嵌套,各种图表
'pymdownx.betterem', # 改善强调的处理(粗体和斜体)
'pymdownx.mark', # 亮色突出文本
'pymdownx.highlight', # 高亮显示代码
'pymdownx.tasklist', # 任务列表
'pymdownx.tilde', # 删除线
]
extensions.extend(third_party_extensions)
extension_configs = {
'mdx_math': {
'enable_dollar_delimiter': True # 允许单个$
},
'pymdownx.superfences': {
"custom_fences": [
{
'name': 'mermaid', # 开启流程图等图
'class': 'mermaid',
'format': superfences.fence_div_format
}
]
},
'pymdownx.highlight': {
'linenums': True, # 显示行号
'linenums_style': 'pymdownx-inline' # 代码和行号分开
},
'pymdownx.tasklist': {
'clickable_checkbox': True, # 任务列表可点击
}
}
with codecs.open(md_file, "r", encoding="utf-8") as f:
md_content = f.read()
html_file = os.path.join(output_dir, 'output.html')
html_final_file = os.path.join(output_dir, 'output-final.html')
html_content = markdown.markdown(md_content, extensions=extensions, extension_configs=extension_configs)
with codecs.open(html_file, "w", encoding="utf-8") as f:
# 加入文件头防止中文乱码
f.write('<meta content="text/html; charset=utf-8" http-equiv="Content-Type"/>')
f.write('<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_SVG"></script>')
f.write(html_content)
# 优化html中的图片信息
with codecs.open(html_file, "r", encoding="utf-8") as f:
soup = BeautifulSoup(f, features="lxml")
image_content = soup.find_all("img")
for i in image_content:
i["style"] = "max-width:100%; overflow:hidden;"
with codecs.open(html_final_file, "w", encoding="utf-8") as g:
g.write(soup.prettify())
pdfkit.from_file(html_final_file, pdf_file)