import os import re from typing import List, Tuple, Optional, Dict import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') import fitz # PyMuPDF import shapely.geometry as sg from shapely.geometry.base import BaseGeometry from shapely.validation import explain_validity import concurrent.futures # This Default Prompt Using Chinese and could be changed to other languages. DEFAULT_PROMPT = """使用markdown语法,将图片中识别到的文字转换为markdown格式输出。你必须做到: 1. 输出和使用识别到的图片的相同的语言,例如,识别到英语的字段,输出的内容必须是英语。 2. 不要解释和输出无关的文字,直接输出图片中的内容。例如,严禁输出 “以下是我根据图片内容生成的markdown文本:”这样的例子,而是应该直接输出markdown。 3. 内容不要包含在```markdown ```中、段落公式使用 $$ $$ 的形式、行内公式使用 $ $ 的形式、忽略掉长直线、忽略掉页码。 再次强调,不要解释和输出无关的文字,直接输出图片中的内容。 """ DEFAULT_RECT_PROMPT = """图片中用红色框和名称(%s)标注出了一些区域。如果区域是表格或者图片,使用 ![]() 的形式插入到输出内容中,否则直接输出文字内容。 """ DEFAULT_ROLE_PROMPT = """你是一个PDF文档解析器,使用markdown和latex语法输出图片的内容。 """ def _is_near(rect1: BaseGeometry, rect2: BaseGeometry, distance: float = 20) -> bool: """ Check if two rectangles are near each other if the distance between them is less than the target. """ return rect1.buffer(0.1).distance(rect2.buffer(0.1)) < distance def _is_horizontal_near(rect1: BaseGeometry, rect2: BaseGeometry, distance: float = 100) -> bool: """ Check if two rectangles are near horizontally if one of them is a horizontal line. """ result = False if abs(rect1.bounds[3] - rect1.bounds[1]) < 0.1 or abs(rect2.bounds[3] - rect2.bounds[1]) < 0.1: if abs(rect1.bounds[0] - rect2.bounds[0]) < 0.1 and abs(rect1.bounds[2] - rect2.bounds[2]) < 0.1: result = abs(rect1.bounds[3] - rect2.bounds[3]) < distance return result def _union_rects(rect1: BaseGeometry, rect2: BaseGeometry) -> BaseGeometry: """ Union two rectangles. """ return sg.box(*(rect1.union(rect2).bounds)) def _merge_rects(rect_list: List[BaseGeometry], distance: float = 20, horizontal_distance: Optional[float] = None) -> \ List[BaseGeometry]: """ Merge rectangles in the list if the distance between them is less than the target. """ merged = True while merged: merged = False new_rect_list = [] while rect_list: rect = rect_list.pop(0) for other_rect in rect_list: if _is_near(rect, other_rect, distance) or ( horizontal_distance and _is_horizontal_near(rect, other_rect, horizontal_distance)): rect = _union_rects(rect, other_rect) rect_list.remove(other_rect) merged = True new_rect_list.append(rect) rect_list = new_rect_list return rect_list def _adsorb_rects_to_rects(source_rects: List[BaseGeometry], target_rects: List[BaseGeometry], distance: float = 10) -> \ Tuple[List[BaseGeometry], List[BaseGeometry]]: """ Adsorb a set of rectangles to another set of rectangles. """ new_source_rects = [] for text_area_rect in source_rects: adsorbed = False for index, rect in enumerate(target_rects): if _is_near(text_area_rect, rect, distance): rect = _union_rects(text_area_rect, rect) target_rects[index] = rect adsorbed = True break if not adsorbed: new_source_rects.append(text_area_rect) return new_source_rects, target_rects def _parse_rects(page: fitz.Page) -> List[Tuple[float, float, float, float]]: """ Parse drawings in the page and merge adjacent rectangles. """ # 提取画的内容 drawings = page.get_drawings() # 忽略掉长度小于30的水平直线 is_short_line = lambda x: abs(x['rect'][3] - x['rect'][1]) < 1 and abs(x['rect'][2] - x['rect'][0]) < 30 drawings = [drawing for drawing in drawings if not is_short_line(drawing)] # 转换为shapely的矩形 rect_list = [sg.box(*drawing['rect']) for drawing in drawings] # 提取图片区域 images = page.get_image_info() image_rects = [sg.box(*image['bbox']) for image in images] # 合并drawings和images rect_list += image_rects merged_rects = _merge_rects(rect_list, distance=10, horizontal_distance=100) merged_rects = [rect for rect in merged_rects if explain_validity(rect) == 'Valid Geometry'] # 将大文本区域和小文本区域分开处理: 大文本相小合并,小文本靠近合并 is_large_content = lambda x: (len(x[4]) / max(1, len(x[4].split('\n')))) > 5 small_text_area_rects = [sg.box(*x[:4]) for x in page.get_text('blocks') if not is_large_content(x)] large_text_area_rects = [sg.box(*x[:4]) for x in page.get_text('blocks') if is_large_content(x)] _, merged_rects = _adsorb_rects_to_rects(large_text_area_rects, merged_rects, distance=0.1) # 完全相交 _, merged_rects = _adsorb_rects_to_rects(small_text_area_rects, merged_rects, distance=5) # 靠近 # 再次自身合并 merged_rects = _merge_rects(merged_rects, distance=10) # 过滤比较小的矩形 merged_rects = [rect for rect in merged_rects if rect.bounds[2] - rect.bounds[0] > 20 and rect.bounds[3] - rect.bounds[1] > 20] return [rect.bounds for rect in merged_rects] def _parse_pdf_to_images(pdf_path: str, output_dir: str = './') -> List[Tuple[str, List[str]]]: """ Parse PDF to images and save to output_dir. """ # 打开PDF文件 pdf_document = fitz.open(pdf_path) image_infos = [] for page_index, page in enumerate(pdf_document): logging.info(f'parse page: {page_index}') rect_images = [] rects = _parse_rects(page) for index, rect in enumerate(rects): fitz_rect = fitz.Rect(rect) # 保存页面为图片 pix = page.get_pixmap(clip=fitz_rect, matrix=fitz.Matrix(4, 4)) name = f'{page_index}_{index}.png' pix.save(os.path.join(output_dir, name)) rect_images.append(name) # # 在页面上绘制红色矩形 big_fitz_rect = fitz.Rect(fitz_rect.x0 - 1, fitz_rect.y0 - 1, fitz_rect.x1 + 1, fitz_rect.y1 + 1) # 空心矩形 page.draw_rect(big_fitz_rect, color=(1, 0, 0), width=1) # 画矩形区域(实心) # page.draw_rect(big_fitz_rect, color=(1, 0, 0), fill=(1, 0, 0)) # 在矩形内的左上角写上矩形的索引name,添加一些偏移量 text_x = fitz_rect.x0 + 2 text_y = fitz_rect.y0 + 10 text_rect = fitz.Rect(text_x, text_y - 9, text_x + 80, text_y + 2) # 绘制白色背景矩形 page.draw_rect(text_rect, color=(1, 1, 1), fill=(1, 1, 1)) # 插入带有白色背景的文字 page.insert_text((text_x, text_y), name, fontsize=10, color=(1, 0, 0)) page_image_with_rects = page.get_pixmap(matrix=fitz.Matrix(3, 3)) page_image = os.path.join(output_dir, f'{page_index}.png') page_image_with_rects.save(page_image) image_infos.append((page_image, rect_images)) pdf_document.close() return image_infos def _gpt_parse_images( image_infos: List[Tuple[str, List[str]]], prompt_dict: Optional[Dict] = None, output_dir: str = './', api_key: Optional[str] = None, base_url: Optional[str] = None, model: str = 'gpt-4o', verbose: bool = False, gpt_worker: int = 1, **args ) -> str: """ Parse images to markdown content. """ from GeneralAgent import Agent if isinstance(prompt_dict, dict) and 'prompt' in prompt_dict: prompt = prompt_dict['prompt'] logging.info("prompt is provided, using user prompt.") else: prompt = DEFAULT_PROMPT logging.info("prompt is not provided, using default prompt.") if isinstance(prompt_dict, dict) and 'rect_prompt' in prompt_dict: rect_prompt = prompt_dict['rect_prompt'] logging.info("rect_prompt is provided, using user prompt.") else: rect_prompt = DEFAULT_RECT_PROMPT logging.info("rect_prompt is not provided, using default prompt.") if isinstance(prompt_dict, dict) and 'role_prompt' in prompt_dict: role_prompt = prompt_dict['role_prompt'] logging.info("role_prompt is provided, using user prompt.") else: role_prompt = DEFAULT_ROLE_PROMPT logging.info("role_prompt is not provided, using default prompt.") def _process_page(index: int, image_info: Tuple[str, List[str]]) -> Tuple[int, str]: logging.info(f'gpt parse page: {index}') agent = Agent(role=role_prompt, api_key=api_key, base_url=base_url, disable_python_run=True, model=model, **args) page_image, rect_images = image_info local_prompt = prompt if rect_images: local_prompt += rect_prompt + ', '.join(rect_images) content = agent.run([local_prompt, {'image': page_image}], display=verbose) return index, content contents = [None] * len(image_infos) with concurrent.futures.ThreadPoolExecutor(max_workers=gpt_worker) as executor: futures = [executor.submit(_process_page, index, image_info) for index, image_info in enumerate(image_infos)] for future in concurrent.futures.as_completed(futures): index, content = future.result() # 在某些情况下大模型还是会输出 ```markdown ```字符串 if '```markdown' in content: content = content.replace('```markdown\n', '') last_backticks_pos = content.rfind('```') if last_backticks_pos != -1: content = content[:last_backticks_pos] + content[last_backticks_pos + 3:] contents[index] = content output_path = os.path.join(output_dir, 'output.md') with open(output_path, 'w', encoding='utf-8') as f: f.write('\n\n'.join(contents)) return '\n\n'.join(contents) def parse_pdf( pdf_path: str, output_dir: str = './', prompt: Optional[Dict] = None, api_key: Optional[str] = None, base_url: Optional[str] = None, model: str = 'gpt-4o', verbose: bool = False, gpt_worker: int = 1, **args ) -> Tuple[str, List[str]]: """ Parse a PDF file to a markdown file. """ if not os.path.exists(output_dir): os.makedirs(output_dir) image_infos = _parse_pdf_to_images(pdf_path, output_dir=output_dir) content = _gpt_parse_images( image_infos=image_infos, output_dir=output_dir, prompt_dict=prompt, api_key=api_key, base_url=base_url, model=model, verbose=verbose, gpt_worker=gpt_worker, **args ) all_rect_images = [] # remove all rect images if not verbose: for page_image, rect_images in image_infos: if os.path.exists(page_image): os.remove(page_image) all_rect_images.extend(rect_images) return content, all_rect_images