stock / scenario_predictor.py
gitdeem's picture
Upload 32 files
f5d52f6 verified
# -*- coding: utf-8 -*-
"""
智能分析系统(股票) - 股票市场数据分析系统
开发者:熊猫大侠
版本:v2.1.0
许可证:MIT License
"""
# scenario_predictor.py
import os
import numpy as np
import pandas as pd
from datetime import datetime, timedelta
import openai
"""
"""
class ScenarioPredictor:
def __init__(self, analyzer, openai_api_key=None, openai_model=None):
self.analyzer = analyzer
self.openai_api_key = os.getenv('OPENAI_API_KEY', os.getenv('OPENAI_API_KEY'))
self.openai_api_url = os.getenv('OPENAI_API_URL')
self.openai_model = os.getenv('OPENAI_API_MODEL', 'gemini-2.0-pro-exp-02-05')
def generate_scenarios(self, stock_code, market_type='A', days=60):
"""生成乐观、中性、悲观三种市场情景预测"""
try:
# 获取股票数据和技术指标
df = self.analyzer.get_stock_data(stock_code, market_type)
df = self.analyzer.calculate_indicators(df)
# 获取股票信息
stock_info = self.analyzer.get_stock_info(stock_code)
# 计算基础数据
current_price = df.iloc[-1]['close']
avg_volatility = df['Volatility'].mean()
# 根据历史波动率计算情景
scenarios = self._calculate_scenarios(df, days)
# 使用AI生成各情景的分析
if self.openai_api_key:
ai_analysis = self._generate_ai_analysis(stock_code, stock_info, df, scenarios)
scenarios.update(ai_analysis)
return scenarios
except Exception as e:
print(f"生成情景预测出错: {str(e)}")
return {}
def _calculate_scenarios(self, df, days):
"""基于历史数据计算三种情景的价格预测"""
current_price = df.iloc[-1]['close']
# 计算历史波动率和移动均线
volatility = df['Volatility'].mean() / 100 # 转换为小数
daily_volatility = volatility / np.sqrt(252) # 转换为日波动率
ma20 = df.iloc[-1]['MA20']
ma60 = df.iloc[-1]['MA60']
# 计算乐观情景(上涨至压力位或突破)
optimistic_return = 0.15 # 15%上涨
if df.iloc[-1]['BB_upper'] > current_price:
optimistic_target = df.iloc[-1]['BB_upper'] * 1.05 # 突破上轨5%
else:
optimistic_target = current_price * (1 + optimistic_return)
# 计算中性情景(震荡,围绕当前价格或20日均线波动)
neutral_target = (current_price + ma20) / 2
# 计算悲观情景(下跌至支撑位或跌破)
pessimistic_return = -0.12 # 12%下跌
if df.iloc[-1]['BB_lower'] < current_price:
pessimistic_target = df.iloc[-1]['BB_lower'] * 0.95 # 跌破下轨5%
else:
pessimistic_target = current_price * (1 + pessimistic_return)
# 计算预期时间
time_periods = np.arange(1, days + 1)
# 生成乐观路径
opt_path = [current_price]
for _ in range(days):
daily_return = (optimistic_target / current_price) ** (1 / days) - 1
random_component = np.random.normal(0, daily_volatility)
new_price = opt_path[-1] * (1 + daily_return + random_component / 2)
opt_path.append(new_price)
# 生成中性路径
neu_path = [current_price]
for _ in range(days):
daily_return = (neutral_target / current_price) ** (1 / days) - 1
random_component = np.random.normal(0, daily_volatility)
new_price = neu_path[-1] * (1 + daily_return + random_component)
neu_path.append(new_price)
# 生成悲观路径
pes_path = [current_price]
for _ in range(days):
daily_return = (pessimistic_target / current_price) ** (1 / days) - 1
random_component = np.random.normal(0, daily_volatility)
new_price = pes_path[-1] * (1 + daily_return + random_component / 2)
pes_path.append(new_price)
# 生成日期序列
start_date = datetime.now()
dates = [(start_date + timedelta(days=i)).strftime('%Y-%m-%d') for i in range(days + 1)]
# 组织结果
return {
'current_price': current_price,
'optimistic': {
'target_price': optimistic_target,
'change_percent': (optimistic_target / current_price - 1) * 100,
'path': dict(zip(dates, opt_path))
},
'neutral': {
'target_price': neutral_target,
'change_percent': (neutral_target / current_price - 1) * 100,
'path': dict(zip(dates, neu_path))
},
'pessimistic': {
'target_price': pessimistic_target,
'change_percent': (pessimistic_target / current_price - 1) * 100,
'path': dict(zip(dates, pes_path))
}
}
def _generate_ai_analysis(self, stock_code, stock_info, df, scenarios):
"""使用AI生成各情景的分析说明"""
try:
openai.api_key = self.openai_api_key
openai.api_base = self.openai_api_url
# 提取关键数据
current_price = df.iloc[-1]['close']
ma5 = df.iloc[-1]['MA5']
ma20 = df.iloc[-1]['MA20']
ma60 = df.iloc[-1]['MA60']
rsi = df.iloc[-1]['RSI']
macd = df.iloc[-1]['MACD']
signal = df.iloc[-1]['Signal']
# 构建提示词
prompt = f"""分析股票{stock_code}{stock_info.get('股票名称', '未知')})的三种市场情景:
1. 当前数据:
- 当前价格: {current_price}
- 均线: MA5={ma5}, MA20={ma20}, MA60={ma60}
- RSI: {rsi}
- MACD: {macd}, Signal: {signal}
2. 预测目标价:
- 乐观情景: {scenarios['optimistic']['target_price']:.2f} ({scenarios['optimistic']['change_percent']:.2f}%)
- 中性情景: {scenarios['neutral']['target_price']:.2f} ({scenarios['neutral']['change_percent']:.2f}%)
- 悲观情景: {scenarios['pessimistic']['target_price']:.2f} ({scenarios['pessimistic']['change_percent']:.2f}%)
请为每种情景提供简短分析(每种情景100字以内),包括可能的触发条件和风险因素。格式为JSON:
{{
"optimistic_analysis": "乐观情景分析...",
"neutral_analysis": "中性情景分析...",
"pessimistic_analysis": "悲观情景分析..."
}}
"""
# 调用AI API
response = openai.ChatCompletion.create(
model=self.openai_model,
messages=[
{"role": "system", "content": "你是专业的股票分析师,擅长技术分析和情景预测。"},
{"role": "user", "content": prompt}
],
temperature=0.7
)
# 解析AI回复
import json
try:
analysis = json.loads(response.choices[0].message.content)
return analysis
except:
# 如果解析失败,尝试从文本中提取JSON
import re
json_match = re.search(r'```json\s*([\s\S]*?)\s*```', response.choices[0].message.content)
if json_match:
json_str = json_match.group(1)
return json.loads(json_str)
else:
return {
"optimistic_analysis": "乐观情景分析暂无",
"neutral_analysis": "中性情景分析暂无",
"pessimistic_analysis": "悲观情景分析暂无"
}
except Exception as e:
print(f"生成AI分析出错: {str(e)}")
return {
"optimistic_analysis": "乐观情景分析暂无",
"neutral_analysis": "中性情景分析暂无",
"pessimistic_analysis": "悲观情景分析暂无"
}