|
|
|
"""
|
|
智能分析系统(股票) - 股票市场数据分析系统
|
|
开发者:熊猫大侠
|
|
版本:v2.1.0
|
|
许可证:MIT License
|
|
"""
|
|
|
|
import os
|
|
import numpy as np
|
|
import pandas as pd
|
|
from datetime import datetime, timedelta
|
|
import openai
|
|
"""
|
|
|
|
"""
|
|
|
|
class ScenarioPredictor:
|
|
def __init__(self, analyzer, openai_api_key=None, openai_model=None):
|
|
self.analyzer = analyzer
|
|
self.openai_api_key = os.getenv('OPENAI_API_KEY', os.getenv('OPENAI_API_KEY'))
|
|
self.openai_api_url = os.getenv('OPENAI_API_URL')
|
|
self.openai_model = os.getenv('OPENAI_API_MODEL', 'gemini-2.0-pro-exp-02-05')
|
|
|
|
|
|
def generate_scenarios(self, stock_code, market_type='A', days=60):
|
|
"""生成乐观、中性、悲观三种市场情景预测"""
|
|
try:
|
|
|
|
df = self.analyzer.get_stock_data(stock_code, market_type)
|
|
df = self.analyzer.calculate_indicators(df)
|
|
|
|
|
|
stock_info = self.analyzer.get_stock_info(stock_code)
|
|
|
|
|
|
current_price = df.iloc[-1]['close']
|
|
avg_volatility = df['Volatility'].mean()
|
|
|
|
|
|
scenarios = self._calculate_scenarios(df, days)
|
|
|
|
|
|
if self.openai_api_key:
|
|
ai_analysis = self._generate_ai_analysis(stock_code, stock_info, df, scenarios)
|
|
scenarios.update(ai_analysis)
|
|
|
|
return scenarios
|
|
except Exception as e:
|
|
print(f"生成情景预测出错: {str(e)}")
|
|
return {}
|
|
|
|
def _calculate_scenarios(self, df, days):
|
|
"""基于历史数据计算三种情景的价格预测"""
|
|
current_price = df.iloc[-1]['close']
|
|
|
|
|
|
volatility = df['Volatility'].mean() / 100
|
|
daily_volatility = volatility / np.sqrt(252)
|
|
ma20 = df.iloc[-1]['MA20']
|
|
ma60 = df.iloc[-1]['MA60']
|
|
|
|
|
|
optimistic_return = 0.15
|
|
if df.iloc[-1]['BB_upper'] > current_price:
|
|
optimistic_target = df.iloc[-1]['BB_upper'] * 1.05
|
|
else:
|
|
optimistic_target = current_price * (1 + optimistic_return)
|
|
|
|
|
|
neutral_target = (current_price + ma20) / 2
|
|
|
|
|
|
pessimistic_return = -0.12
|
|
if df.iloc[-1]['BB_lower'] < current_price:
|
|
pessimistic_target = df.iloc[-1]['BB_lower'] * 0.95
|
|
else:
|
|
pessimistic_target = current_price * (1 + pessimistic_return)
|
|
|
|
|
|
time_periods = np.arange(1, days + 1)
|
|
|
|
|
|
opt_path = [current_price]
|
|
for _ in range(days):
|
|
daily_return = (optimistic_target / current_price) ** (1 / days) - 1
|
|
random_component = np.random.normal(0, daily_volatility)
|
|
new_price = opt_path[-1] * (1 + daily_return + random_component / 2)
|
|
opt_path.append(new_price)
|
|
|
|
|
|
neu_path = [current_price]
|
|
for _ in range(days):
|
|
daily_return = (neutral_target / current_price) ** (1 / days) - 1
|
|
random_component = np.random.normal(0, daily_volatility)
|
|
new_price = neu_path[-1] * (1 + daily_return + random_component)
|
|
neu_path.append(new_price)
|
|
|
|
|
|
pes_path = [current_price]
|
|
for _ in range(days):
|
|
daily_return = (pessimistic_target / current_price) ** (1 / days) - 1
|
|
random_component = np.random.normal(0, daily_volatility)
|
|
new_price = pes_path[-1] * (1 + daily_return + random_component / 2)
|
|
pes_path.append(new_price)
|
|
|
|
|
|
start_date = datetime.now()
|
|
dates = [(start_date + timedelta(days=i)).strftime('%Y-%m-%d') for i in range(days + 1)]
|
|
|
|
|
|
return {
|
|
'current_price': current_price,
|
|
'optimistic': {
|
|
'target_price': optimistic_target,
|
|
'change_percent': (optimistic_target / current_price - 1) * 100,
|
|
'path': dict(zip(dates, opt_path))
|
|
},
|
|
'neutral': {
|
|
'target_price': neutral_target,
|
|
'change_percent': (neutral_target / current_price - 1) * 100,
|
|
'path': dict(zip(dates, neu_path))
|
|
},
|
|
'pessimistic': {
|
|
'target_price': pessimistic_target,
|
|
'change_percent': (pessimistic_target / current_price - 1) * 100,
|
|
'path': dict(zip(dates, pes_path))
|
|
}
|
|
}
|
|
|
|
def _generate_ai_analysis(self, stock_code, stock_info, df, scenarios):
|
|
"""使用AI生成各情景的分析说明"""
|
|
try:
|
|
openai.api_key = self.openai_api_key
|
|
openai.api_base = self.openai_api_url
|
|
|
|
|
|
current_price = df.iloc[-1]['close']
|
|
ma5 = df.iloc[-1]['MA5']
|
|
ma20 = df.iloc[-1]['MA20']
|
|
ma60 = df.iloc[-1]['MA60']
|
|
rsi = df.iloc[-1]['RSI']
|
|
macd = df.iloc[-1]['MACD']
|
|
signal = df.iloc[-1]['Signal']
|
|
|
|
|
|
prompt = f"""分析股票{stock_code}({stock_info.get('股票名称', '未知')})的三种市场情景:
|
|
|
|
1. 当前数据:
|
|
- 当前价格: {current_price}
|
|
- 均线: MA5={ma5}, MA20={ma20}, MA60={ma60}
|
|
- RSI: {rsi}
|
|
- MACD: {macd}, Signal: {signal}
|
|
|
|
2. 预测目标价:
|
|
- 乐观情景: {scenarios['optimistic']['target_price']:.2f} ({scenarios['optimistic']['change_percent']:.2f}%)
|
|
- 中性情景: {scenarios['neutral']['target_price']:.2f} ({scenarios['neutral']['change_percent']:.2f}%)
|
|
- 悲观情景: {scenarios['pessimistic']['target_price']:.2f} ({scenarios['pessimistic']['change_percent']:.2f}%)
|
|
|
|
请为每种情景提供简短分析(每种情景100字以内),包括可能的触发条件和风险因素。格式为JSON:
|
|
{{
|
|
"optimistic_analysis": "乐观情景分析...",
|
|
"neutral_analysis": "中性情景分析...",
|
|
"pessimistic_analysis": "悲观情景分析..."
|
|
}}
|
|
"""
|
|
|
|
|
|
response = openai.ChatCompletion.create(
|
|
model=self.openai_model,
|
|
messages=[
|
|
{"role": "system", "content": "你是专业的股票分析师,擅长技术分析和情景预测。"},
|
|
{"role": "user", "content": prompt}
|
|
],
|
|
temperature=0.7
|
|
)
|
|
|
|
|
|
import json
|
|
try:
|
|
analysis = json.loads(response.choices[0].message.content)
|
|
return analysis
|
|
except:
|
|
|
|
import re
|
|
json_match = re.search(r'```json\s*([\s\S]*?)\s*```', response.choices[0].message.content)
|
|
if json_match:
|
|
json_str = json_match.group(1)
|
|
return json.loads(json_str)
|
|
else:
|
|
return {
|
|
"optimistic_analysis": "乐观情景分析暂无",
|
|
"neutral_analysis": "中性情景分析暂无",
|
|
"pessimistic_analysis": "悲观情景分析暂无"
|
|
}
|
|
except Exception as e:
|
|
print(f"生成AI分析出错: {str(e)}")
|
|
return {
|
|
"optimistic_analysis": "乐观情景分析暂无",
|
|
"neutral_analysis": "中性情景分析暂无",
|
|
"pessimistic_analysis": "悲观情景分析暂无"
|
|
} |