# -*- coding: utf-8 -*- """ 智能分析系统(股票) - 股票市场数据分析系统 修改:熊猫大侠 版本:v2.1.0 """ # us_stock_service.py import akshare as ak import pandas as pd import logging class USStockService: def __init__(self): logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') self.logger = logging.getLogger(__name__) def search_us_stocks(self, keyword): """ 搜索美股代码 :param keyword: 搜索关键词 :return: 匹配的股票列表 """ try: # 获取美股数据 df = ak.stock_us_spot_em() # 转换列名 df = df.rename(columns={ "序号": "index", "名称": "name", "最新价": "price", "涨跌额": "price_change", "涨跌幅": "price_change_percent", "开盘价": "open", "最高价": "high", "最低价": "low", "昨收价": "pre_close", "总市值": "market_value", "市盈率": "pe_ratio", "成交量": "volume", "成交额": "turnover", "振幅": "amplitude", "换手率": "turnover_rate", "代码": "symbol" }) # 模糊匹配搜索 mask = df['name'].str.contains(keyword, case=False, na=False) results = df[mask] # 格式化返回结果并处理 NaN 值 formatted_results = [] for _, row in results.iterrows(): formatted_results.append({ 'name': row['name'] if pd.notna(row['name']) else '', 'symbol': str(row['symbol']) if pd.notna(row['symbol']) else '', 'price': float(row['price']) if pd.notna(row['price']) else 0.0, 'market_value': float(row['market_value']) if pd.notna(row['market_value']) else 0.0 }) return formatted_results except Exception as e: self.logger.error(f"搜索美股代码时出错: {str(e)}") raise Exception(f"搜索美股代码失败: {str(e)}")