Spaces:
Runtime error
Runtime error
updat
Browse files- __pycache__/utils.cpython-310.pyc +0 -0
- app.py +104 -68
- cache.py +0 -75
- global_compression.py +0 -211
- preprocess_document.py +0 -34
- rag.py +0 -53
__pycache__/utils.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/utils.cpython-310.pyc and b/__pycache__/utils.cpython-310.pyc differ
|
|
|
app.py
CHANGED
|
@@ -68,8 +68,6 @@ question: Prior to playing for Michigan State, Keith Nichol played football for
|
|
| 68 |
answer: Norman
|
| 69 |
"""
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
CHROMA_DB_DIR = "./chroma_db"
|
| 74 |
CACHE_DIR = "./cache_dir"
|
| 75 |
EXPIRATION_SECONDS = 3600
|
|
@@ -227,8 +225,7 @@ def auto_convert(file_objs, url, do_ocr, do_table_structure):
|
|
| 227 |
gr.update(interactive=False),
|
| 228 |
False,
|
| 229 |
{},
|
| 230 |
-
chat_status
|
| 231 |
-
gr.update(interactive=False) # Disable chat interface
|
| 232 |
)
|
| 233 |
print("Converting to markdown")
|
| 234 |
try:
|
|
@@ -243,8 +240,7 @@ def auto_convert(file_objs, url, do_ocr, do_table_structure):
|
|
| 243 |
gr.update(interactive=False),
|
| 244 |
False,
|
| 245 |
{},
|
| 246 |
-
chat_status
|
| 247 |
-
gr.update(interactive=False) # Disable chat interface on error
|
| 248 |
)
|
| 249 |
|
| 250 |
print("Done")
|
|
@@ -254,7 +250,7 @@ def auto_convert(file_objs, url, do_ocr, do_table_structure):
|
|
| 254 |
print("Done")
|
| 255 |
min_ratio = min(suggestions)
|
| 256 |
max_ratio = max(suggestions)
|
| 257 |
-
default_ratio =
|
| 258 |
retrieval_tokens = int(token_count / default_ratio)
|
| 259 |
token_count_str = f"Number of tokens before compression: {token_count}"
|
| 260 |
retrieval_str = f"Number of tokens after compression: {retrieval_tokens}"
|
|
@@ -277,8 +273,7 @@ def auto_convert(file_objs, url, do_ocr, do_table_structure):
|
|
| 277 |
gr.update(interactive=True), # Enable compress button if conversion succeeds.
|
| 278 |
False,
|
| 279 |
state,
|
| 280 |
-
chat_status
|
| 281 |
-
gr.update(interactive=False) # Ensure chat remains disabled until compression
|
| 282 |
)
|
| 283 |
|
| 284 |
def get_compressed_kv_cache(sink_tokens, step_size, target_token_size, context_ids, context_attention_mask, question_ids, question_attention_mask):
|
|
@@ -458,8 +453,11 @@ def run_naive_rag_query(collection_name, query, rag_token_size, prefix, task, fe
|
|
| 458 |
return rag_context
|
| 459 |
|
| 460 |
@spaces.GPU
|
| 461 |
-
def prepare_compression_and_rag(combined_text, retrieval_slider_value, global_local_value, task_description, few_shot, state):
|
|
|
|
|
|
|
| 462 |
percentage = int(global_local_value.replace('%', ''))
|
|
|
|
| 463 |
question_text = task_description + "\n" + few_shot
|
| 464 |
context_encoding = tokenizer(combined_text, return_tensors="pt").to(device)
|
| 465 |
question_encoding = tokenizer(question_text, return_tensors="pt").to(device)
|
|
@@ -467,41 +465,44 @@ def prepare_compression_and_rag(combined_text, retrieval_slider_value, global_lo
|
|
| 467 |
context_attention_mask = context_encoding["attention_mask"]
|
| 468 |
question_ids = question_encoding["input_ids"]
|
| 469 |
question_attention_mask = question_encoding["attention_mask"]
|
|
|
|
| 470 |
retrieval_context_length = int(context_ids.size(1) / retrieval_slider_value)
|
| 471 |
-
# Compute token breakdown for display (KV compress vs RAG tokens)
|
| 472 |
rag_tokens = int(retrieval_context_length * (1.0 - (percentage / 100)))
|
| 473 |
kv_tokens = retrieval_context_length - rag_tokens
|
| 474 |
-
|
|
|
|
| 475 |
if percentage > 0:
|
| 476 |
target_token_size = int(retrieval_context_length * (percentage / 100))
|
| 477 |
-
|
| 478 |
step_size = 2
|
| 479 |
-
start_time_prefill = time.perf_counter()
|
| 480 |
try:
|
| 481 |
past_key_values = copy.deepcopy(get_compressed_kv_cache(sink_tokens, step_size, target_token_size,
|
| 482 |
context_ids, context_attention_mask,
|
| 483 |
question_ids, question_attention_mask))
|
| 484 |
except Exception as e:
|
|
|
|
| 485 |
print("Error during KV cache compression:", e)
|
| 486 |
state["error"] = "Error during KV cache compression. Please try lowering the compression ratio and try again."
|
| 487 |
return state, False
|
| 488 |
compressed_length = past_key_values.get_seq_length()
|
| 489 |
-
|
| 490 |
-
print("Compression rate: ", context_ids.size(1) / compressed_length)
|
| 491 |
else:
|
| 492 |
-
start_time_prefill = 0
|
| 493 |
target_token_size = 0
|
| 494 |
past_key_values = FinchCache()
|
| 495 |
compressed_length = past_key_values.get_seq_length()
|
|
|
|
|
|
|
| 496 |
current_timestamp = int(time.time())
|
| 497 |
cache_name = f"cache_{current_timestamp}_{uuid.uuid4().hex[:6]}.pt"
|
| 498 |
save_dir = "./cache_dir"
|
| 499 |
os.makedirs(save_dir, exist_ok=True)
|
| 500 |
save_path = os.path.join(save_dir, cache_name)
|
| 501 |
past_key_values.save(save_path)
|
|
|
|
|
|
|
| 502 |
collection_name = state.get("rag_index", None)
|
| 503 |
if collection_name is None:
|
| 504 |
-
print("Collection name not found creating a new one.")
|
| 505 |
if combined_text.startswith(prefix):
|
| 506 |
rag_text = combined_text[len(prefix):]
|
| 507 |
else:
|
|
@@ -509,27 +510,23 @@ def prepare_compression_and_rag(combined_text, retrieval_slider_value, global_lo
|
|
| 509 |
current_timestamp = int(time.time())
|
| 510 |
collection_name = f"default_{current_timestamp}_{uuid.uuid4().hex[:6]}"
|
| 511 |
rag_index = create_rag_index(collection_name, rag_text)
|
|
|
|
| 512 |
state.update({
|
| 513 |
"compressed_cache": save_path,
|
| 514 |
-
"compressed_length": compressed_length,
|
| 515 |
"rag_index": collection_name,
|
| 516 |
-
"target_token_size": target_token_size,
|
| 517 |
"global_local": percentage,
|
| 518 |
-
"combined_text": combined_text,
|
| 519 |
"task_description": task_description,
|
| 520 |
"few_shot": few_shot,
|
| 521 |
"retrieval_slider": retrieval_context_length,
|
| 522 |
-
"prefill_time": time.perf_counter() - start_time_prefill,
|
| 523 |
-
"compression_done": True,
|
| 524 |
-
"tokens_breakdown": f"RAG tokens: {rag_tokens} (for retrieval), {kv_tokens} tokens (for KV compression)",
|
| 525 |
-
"chat_feedback": "Document compressed successfully. You can now chat."
|
| 526 |
})
|
| 527 |
-
|
|
|
|
|
|
|
| 528 |
|
| 529 |
@spaces.GPU
|
| 530 |
-
def chat_response_stream(message: str, history: list, state: dict):
|
| 531 |
# Check if the document is compressed before allowing chat
|
| 532 |
-
if not
|
| 533 |
yield "Document not compressed yet. Please compress the document first to enable chat."
|
| 534 |
return
|
| 535 |
user_message = message
|
|
@@ -589,7 +586,7 @@ def update_token_breakdown(token_count, retrieval_slider, global_local_value):
|
|
| 589 |
percentage = int(global_local_value.replace('%', ''))
|
| 590 |
rag_tokens = int(retrieval_context_length * (1.0 - (percentage / 100)))
|
| 591 |
kv_tokens = retrieval_context_length - rag_tokens
|
| 592 |
-
return f"Token Breakdown: {
|
| 593 |
|
| 594 |
##########################################################################
|
| 595 |
# Gradio Interface
|
|
@@ -651,33 +648,22 @@ body {
|
|
| 651 |
display: flex;
|
| 652 |
align-items: center;
|
| 653 |
}
|
| 654 |
-
|
| 655 |
-
.main-container {
|
| 656 |
-
display: flex;
|
| 657 |
-
justify-content: space-between;
|
| 658 |
-
gap: 20px;
|
| 659 |
-
}
|
| 660 |
-
.upload-section {
|
| 661 |
-
flex: 3;
|
| 662 |
-
}
|
| 663 |
-
.chatbot-container {
|
| 664 |
-
flex: 1;
|
| 665 |
-
margin-top: 0;
|
| 666 |
-
}
|
| 667 |
-
}
|
| 668 |
"""
|
|
|
|
|
|
|
| 669 |
|
| 670 |
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
| 671 |
gr.HTML("<h1><center>Beyond RAG with LLama 3.1-8B-Instruct Model</center></h1>")
|
| 672 |
gr.HTML("<center><p>Compress your document and chat with it.</p></center>")
|
| 673 |
|
|
|
|
|
|
|
|
|
|
| 674 |
hidden_token_count = gr.State(value=0)
|
| 675 |
compression_done = gr.State(value=False)
|
| 676 |
compressed_doc_state = gr.State(value={})
|
| 677 |
|
| 678 |
-
def toggle_chat_interactivity(compression_done):
|
| 679 |
-
return gr.update(interactive=compression_done)
|
| 680 |
-
|
| 681 |
with gr.Row(elem_classes="main-container"):
|
| 682 |
with gr.Column(elem_classes="upload-section"):
|
| 683 |
gr.Markdown("## Document Preprocessing")
|
|
@@ -696,37 +682,90 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
| 696 |
retrieval_slider = gr.Slider(label="Select Compression Rate", minimum=1, maximum=32, step=1, value=2)
|
| 697 |
retrieval_info_text = gr.Markdown("Number of tokens after compression: ")
|
| 698 |
tokens_breakdown_text = gr.Markdown("Token breakdown will appear here.")
|
| 699 |
-
global_local_slider = gr.Radio(label="
|
| 700 |
-
choices=["0%", "25%", "50%", "75%", "100%"], value="
|
| 701 |
compress_button = gr.Button("Compress Document", interactive=False, elem_classes="upload-button")
|
| 702 |
-
chat_status_text = gr.Markdown("Document not compressed yet. Please compress the document to enable chat.")
|
| 703 |
|
| 704 |
-
#
|
| 705 |
file_input.change(
|
| 706 |
fn=auto_convert,
|
| 707 |
inputs=[file_input, url_input, do_ocr, do_table],
|
| 708 |
-
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 709 |
)
|
|
|
|
|
|
|
| 710 |
url_input.change(
|
| 711 |
fn=auto_convert,
|
| 712 |
inputs=[file_input, url_input, do_ocr, do_table],
|
| 713 |
-
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 714 |
)
|
|
|
|
|
|
|
| 715 |
do_ocr.change(
|
| 716 |
fn=auto_convert,
|
| 717 |
inputs=[file_input, url_input, do_ocr, do_table],
|
| 718 |
-
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 719 |
)
|
|
|
|
|
|
|
| 720 |
do_table.change(
|
| 721 |
fn=auto_convert,
|
| 722 |
inputs=[file_input, url_input, do_ocr, do_table],
|
| 723 |
-
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 724 |
)
|
|
|
|
|
|
|
| 725 |
retrieval_slider.change(
|
| 726 |
-
fn=
|
| 727 |
-
inputs=
|
| 728 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 729 |
)
|
|
|
|
|
|
|
| 730 |
retrieval_slider.change(
|
| 731 |
fn=update_token_breakdown,
|
| 732 |
inputs=[hidden_token_count, retrieval_slider, global_local_slider],
|
|
@@ -737,25 +776,22 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
| 737 |
inputs=[hidden_token_count, retrieval_slider, global_local_slider],
|
| 738 |
outputs=tokens_breakdown_text
|
| 739 |
)
|
|
|
|
|
|
|
| 740 |
compress_button.click(
|
| 741 |
fn=prepare_compression_and_rag,
|
| 742 |
inputs=[markdown_output, retrieval_slider, global_local_slider, task_description_input, few_shot_input, compressed_doc_state],
|
| 743 |
-
outputs=[compressed_doc_state, compression_done]
|
| 744 |
-
).then(
|
| 745 |
-
fn=lambda state: gr.update(value="Document compressed successfully. You can now chat."),
|
| 746 |
-
outputs=chat_status_text
|
| 747 |
-
).then(
|
| 748 |
-
fn=lambda: gr.update(interactive=True),
|
| 749 |
-
outputs=lambda: chat_interface # Re-enable chat interface after successful compression.
|
| 750 |
)
|
| 751 |
-
|
| 752 |
with gr.Column(elem_classes="chatbot-container"):
|
|
|
|
| 753 |
gr.Markdown("## Chat")
|
| 754 |
chat_interface = gr.ChatInterface(
|
| 755 |
fn=chat_response_stream,
|
| 756 |
-
additional_inputs=[compressed_doc_state],
|
| 757 |
type="messages",
|
| 758 |
-
|
| 759 |
)
|
| 760 |
|
| 761 |
-
demo.queue(max_size=16).launch()
|
|
|
|
|
|
| 68 |
answer: Norman
|
| 69 |
"""
|
| 70 |
|
|
|
|
|
|
|
| 71 |
CHROMA_DB_DIR = "./chroma_db"
|
| 72 |
CACHE_DIR = "./cache_dir"
|
| 73 |
EXPIRATION_SECONDS = 3600
|
|
|
|
| 225 |
gr.update(interactive=False),
|
| 226 |
False,
|
| 227 |
{},
|
| 228 |
+
chat_status
|
|
|
|
| 229 |
)
|
| 230 |
print("Converting to markdown")
|
| 231 |
try:
|
|
|
|
| 240 |
gr.update(interactive=False),
|
| 241 |
False,
|
| 242 |
{},
|
| 243 |
+
chat_status
|
|
|
|
| 244 |
)
|
| 245 |
|
| 246 |
print("Done")
|
|
|
|
| 250 |
print("Done")
|
| 251 |
min_ratio = min(suggestions)
|
| 252 |
max_ratio = max(suggestions)
|
| 253 |
+
default_ratio = 6
|
| 254 |
retrieval_tokens = int(token_count / default_ratio)
|
| 255 |
token_count_str = f"Number of tokens before compression: {token_count}"
|
| 256 |
retrieval_str = f"Number of tokens after compression: {retrieval_tokens}"
|
|
|
|
| 273 |
gr.update(interactive=True), # Enable compress button if conversion succeeds.
|
| 274 |
False,
|
| 275 |
state,
|
| 276 |
+
chat_status
|
|
|
|
| 277 |
)
|
| 278 |
|
| 279 |
def get_compressed_kv_cache(sink_tokens, step_size, target_token_size, context_ids, context_attention_mask, question_ids, question_attention_mask):
|
|
|
|
| 453 |
return rag_context
|
| 454 |
|
| 455 |
@spaces.GPU
|
| 456 |
+
def prepare_compression_and_rag(combined_text, retrieval_slider_value, global_local_value, task_description, few_shot, state, progress=gr.Progress()):
|
| 457 |
+
progress(0, desc="Starting compression process")
|
| 458 |
+
|
| 459 |
percentage = int(global_local_value.replace('%', ''))
|
| 460 |
+
progress(0.1, desc="Tokenizing text and preparing task")
|
| 461 |
question_text = task_description + "\n" + few_shot
|
| 462 |
context_encoding = tokenizer(combined_text, return_tensors="pt").to(device)
|
| 463 |
question_encoding = tokenizer(question_text, return_tensors="pt").to(device)
|
|
|
|
| 465 |
context_attention_mask = context_encoding["attention_mask"]
|
| 466 |
question_ids = question_encoding["input_ids"]
|
| 467 |
question_attention_mask = question_encoding["attention_mask"]
|
| 468 |
+
|
| 469 |
retrieval_context_length = int(context_ids.size(1) / retrieval_slider_value)
|
|
|
|
| 470 |
rag_tokens = int(retrieval_context_length * (1.0 - (percentage / 100)))
|
| 471 |
kv_tokens = retrieval_context_length - rag_tokens
|
| 472 |
+
progress(0.2, desc=f"Token breakdown computed: {kv_tokens} KV tokens, {rag_tokens} RAG tokens")
|
| 473 |
+
|
| 474 |
if percentage > 0:
|
| 475 |
target_token_size = int(retrieval_context_length * (percentage / 100))
|
| 476 |
+
progress(0.3, desc="Starting KV cache compression")
|
| 477 |
step_size = 2
|
|
|
|
| 478 |
try:
|
| 479 |
past_key_values = copy.deepcopy(get_compressed_kv_cache(sink_tokens, step_size, target_token_size,
|
| 480 |
context_ids, context_attention_mask,
|
| 481 |
question_ids, question_attention_mask))
|
| 482 |
except Exception as e:
|
| 483 |
+
progress(1, desc="Compression failed")
|
| 484 |
print("Error during KV cache compression:", e)
|
| 485 |
state["error"] = "Error during KV cache compression. Please try lowering the compression ratio and try again."
|
| 486 |
return state, False
|
| 487 |
compressed_length = past_key_values.get_seq_length()
|
| 488 |
+
progress(0.6, desc="KV cache compression completed")
|
|
|
|
| 489 |
else:
|
|
|
|
| 490 |
target_token_size = 0
|
| 491 |
past_key_values = FinchCache()
|
| 492 |
compressed_length = past_key_values.get_seq_length()
|
| 493 |
+
progress(0.3, desc="Skipping compression as percentage is 0")
|
| 494 |
+
|
| 495 |
current_timestamp = int(time.time())
|
| 496 |
cache_name = f"cache_{current_timestamp}_{uuid.uuid4().hex[:6]}.pt"
|
| 497 |
save_dir = "./cache_dir"
|
| 498 |
os.makedirs(save_dir, exist_ok=True)
|
| 499 |
save_path = os.path.join(save_dir, cache_name)
|
| 500 |
past_key_values.save(save_path)
|
| 501 |
+
progress(0.8, desc="Cache saved successfully")
|
| 502 |
+
|
| 503 |
collection_name = state.get("rag_index", None)
|
| 504 |
if collection_name is None:
|
| 505 |
+
print("Collection name not found; creating a new one.")
|
| 506 |
if combined_text.startswith(prefix):
|
| 507 |
rag_text = combined_text[len(prefix):]
|
| 508 |
else:
|
|
|
|
| 510 |
current_timestamp = int(time.time())
|
| 511 |
collection_name = f"default_{current_timestamp}_{uuid.uuid4().hex[:6]}"
|
| 512 |
rag_index = create_rag_index(collection_name, rag_text)
|
| 513 |
+
|
| 514 |
state.update({
|
| 515 |
"compressed_cache": save_path,
|
|
|
|
| 516 |
"rag_index": collection_name,
|
|
|
|
| 517 |
"global_local": percentage,
|
|
|
|
| 518 |
"task_description": task_description,
|
| 519 |
"few_shot": few_shot,
|
| 520 |
"retrieval_slider": retrieval_context_length,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 521 |
})
|
| 522 |
+
progress(1, desc="Compression complete")
|
| 523 |
+
return state, "Document compressed successfully. You can now chat.", True
|
| 524 |
+
|
| 525 |
|
| 526 |
@spaces.GPU
|
| 527 |
+
def chat_response_stream(message: str, history: list, state: dict, compression_done: bool):
|
| 528 |
# Check if the document is compressed before allowing chat
|
| 529 |
+
if not compression_done or "compressed_cache" not in state:
|
| 530 |
yield "Document not compressed yet. Please compress the document first to enable chat."
|
| 531 |
return
|
| 532 |
user_message = message
|
|
|
|
| 586 |
percentage = int(global_local_value.replace('%', ''))
|
| 587 |
rag_tokens = int(retrieval_context_length * (1.0 - (percentage / 100)))
|
| 588 |
kv_tokens = retrieval_context_length - rag_tokens
|
| 589 |
+
return f"Token Breakdown: {kv_tokens} tokens (KV compression), {rag_tokens} tokens (RAG retrieval)"
|
| 590 |
|
| 591 |
##########################################################################
|
| 592 |
# Gradio Interface
|
|
|
|
| 648 |
display: flex;
|
| 649 |
align-items: center;
|
| 650 |
}
|
| 651 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 652 |
"""
|
| 653 |
+
def reset_chat_state():
|
| 654 |
+
return gr.update(value="Document not compressed yet. Please compress the document to enable chat."), False
|
| 655 |
|
| 656 |
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
| 657 |
gr.HTML("<h1><center>Beyond RAG with LLama 3.1-8B-Instruct Model</center></h1>")
|
| 658 |
gr.HTML("<center><p>Compress your document and chat with it.</p></center>")
|
| 659 |
|
| 660 |
+
# Define chat_status_text as a Textbox with a set elem_id for custom styling.
|
| 661 |
+
chat_status_text = gr.Textbox(value="Document not compressed yet. Please compress the document to enable chat.", interactive=False, show_label=False, render=False, lines=5)
|
| 662 |
+
|
| 663 |
hidden_token_count = gr.State(value=0)
|
| 664 |
compression_done = gr.State(value=False)
|
| 665 |
compressed_doc_state = gr.State(value={})
|
| 666 |
|
|
|
|
|
|
|
|
|
|
| 667 |
with gr.Row(elem_classes="main-container"):
|
| 668 |
with gr.Column(elem_classes="upload-section"):
|
| 669 |
gr.Markdown("## Document Preprocessing")
|
|
|
|
| 682 |
retrieval_slider = gr.Slider(label="Select Compression Rate", minimum=1, maximum=32, step=1, value=2)
|
| 683 |
retrieval_info_text = gr.Markdown("Number of tokens after compression: ")
|
| 684 |
tokens_breakdown_text = gr.Markdown("Token breakdown will appear here.")
|
| 685 |
+
global_local_slider = gr.Radio(label="Hybrid Retrieval (0 is all RAG, 100 is all global)",
|
| 686 |
+
choices=["0%", "25%", "50%", "75%", "100%"], value="100%")
|
| 687 |
compress_button = gr.Button("Compress Document", interactive=False, elem_classes="upload-button")
|
|
|
|
| 688 |
|
| 689 |
+
# File input: Run auto_convert then chain reset_chat_state.
|
| 690 |
file_input.change(
|
| 691 |
fn=auto_convert,
|
| 692 |
inputs=[file_input, url_input, do_ocr, do_table],
|
| 693 |
+
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text,
|
| 694 |
+
hidden_token_count, compress_button, compression_done, compressed_doc_state, chat_status_text]
|
| 695 |
+
).then(
|
| 696 |
+
fn=reset_chat_state,
|
| 697 |
+
inputs=None,
|
| 698 |
+
outputs=[chat_status_text, compression_done]
|
| 699 |
)
|
| 700 |
+
|
| 701 |
+
# URL input: Run auto_convert then chain reset_chat_state.
|
| 702 |
url_input.change(
|
| 703 |
fn=auto_convert,
|
| 704 |
inputs=[file_input, url_input, do_ocr, do_table],
|
| 705 |
+
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text,
|
| 706 |
+
hidden_token_count, compress_button, compression_done, compressed_doc_state, chat_status_text]
|
| 707 |
+
).then(
|
| 708 |
+
fn=reset_chat_state,
|
| 709 |
+
inputs=None,
|
| 710 |
+
outputs=[chat_status_text, compression_done]
|
| 711 |
)
|
| 712 |
+
|
| 713 |
+
# OCR checkbox: Run auto_convert then chain reset_chat_state.
|
| 714 |
do_ocr.change(
|
| 715 |
fn=auto_convert,
|
| 716 |
inputs=[file_input, url_input, do_ocr, do_table],
|
| 717 |
+
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text,
|
| 718 |
+
hidden_token_count, compress_button, compression_done, compressed_doc_state, chat_status_text]
|
| 719 |
+
).then(
|
| 720 |
+
fn=reset_chat_state,
|
| 721 |
+
inputs=None,
|
| 722 |
+
outputs=[chat_status_text, compression_done]
|
| 723 |
)
|
| 724 |
+
|
| 725 |
+
# Table structure checkbox: Run auto_convert then chain reset_chat_state.
|
| 726 |
do_table.change(
|
| 727 |
fn=auto_convert,
|
| 728 |
inputs=[file_input, url_input, do_ocr, do_table],
|
| 729 |
+
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text,
|
| 730 |
+
hidden_token_count, compress_button, compression_done, compressed_doc_state, chat_status_text]
|
| 731 |
+
).then(
|
| 732 |
+
fn=reset_chat_state,
|
| 733 |
+
inputs=None,
|
| 734 |
+
outputs=[chat_status_text, compression_done]
|
| 735 |
+
)
|
| 736 |
+
|
| 737 |
+
# Reset chat state when prompt designer fields change.
|
| 738 |
+
task_description_input.change(
|
| 739 |
+
fn=reset_chat_state,
|
| 740 |
+
inputs=None,
|
| 741 |
+
outputs=[chat_status_text, compression_done]
|
| 742 |
+
)
|
| 743 |
+
few_shot_input.change(
|
| 744 |
+
fn=reset_chat_state,
|
| 745 |
+
inputs=None,
|
| 746 |
+
outputs=[chat_status_text, compression_done]
|
| 747 |
+
)
|
| 748 |
+
|
| 749 |
+
# Reset chat state when the Markdown output changes.
|
| 750 |
+
markdown_output.change(
|
| 751 |
+
fn=reset_chat_state,
|
| 752 |
+
inputs=None,
|
| 753 |
+
outputs=[chat_status_text, compression_done]
|
| 754 |
)
|
| 755 |
+
|
| 756 |
+
# When sliders change, reset chat state.
|
| 757 |
retrieval_slider.change(
|
| 758 |
+
fn=reset_chat_state,
|
| 759 |
+
inputs=None,
|
| 760 |
+
outputs=[chat_status_text, compression_done]
|
| 761 |
+
)
|
| 762 |
+
global_local_slider.change(
|
| 763 |
+
fn=reset_chat_state,
|
| 764 |
+
inputs=None,
|
| 765 |
+
outputs=[chat_status_text, compression_done]
|
| 766 |
)
|
| 767 |
+
|
| 768 |
+
# Update token breakdown when sliders change.
|
| 769 |
retrieval_slider.change(
|
| 770 |
fn=update_token_breakdown,
|
| 771 |
inputs=[hidden_token_count, retrieval_slider, global_local_slider],
|
|
|
|
| 776 |
inputs=[hidden_token_count, retrieval_slider, global_local_slider],
|
| 777 |
outputs=tokens_breakdown_text
|
| 778 |
)
|
| 779 |
+
|
| 780 |
+
# Compress button: Prepare compression and then update chat status.
|
| 781 |
compress_button.click(
|
| 782 |
fn=prepare_compression_and_rag,
|
| 783 |
inputs=[markdown_output, retrieval_slider, global_local_slider, task_description_input, few_shot_input, compressed_doc_state],
|
| 784 |
+
outputs=[compressed_doc_state, chat_status_text, compression_done]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 785 |
)
|
|
|
|
| 786 |
with gr.Column(elem_classes="chatbot-container"):
|
| 787 |
+
chat_status_text.render()
|
| 788 |
gr.Markdown("## Chat")
|
| 789 |
chat_interface = gr.ChatInterface(
|
| 790 |
fn=chat_response_stream,
|
| 791 |
+
additional_inputs=[compressed_doc_state, compression_done],
|
| 792 |
type="messages",
|
| 793 |
+
fill_height=True
|
| 794 |
)
|
| 795 |
|
| 796 |
+
demo.queue(max_size=16).launch()
|
| 797 |
+
|
cache.py
DELETED
|
@@ -1,75 +0,0 @@
|
|
| 1 |
-
from transformers import DynamicCache
|
| 2 |
-
import torch
|
| 3 |
-
import os
|
| 4 |
-
|
| 5 |
-
class FinchCache(DynamicCache):
|
| 6 |
-
def __init__(self) -> None:
|
| 7 |
-
super().__init__()
|
| 8 |
-
self.key_cache = []
|
| 9 |
-
self.value_cache = []
|
| 10 |
-
|
| 11 |
-
@staticmethod
|
| 12 |
-
def _rotate_half(x):
|
| 13 |
-
x1 = x[..., : x.shape[-1] // 2]
|
| 14 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
| 15 |
-
return torch.cat((-x2, x1), dim=-1)
|
| 16 |
-
|
| 17 |
-
def _apply_key_rotary_pos_emb(self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
|
| 18 |
-
return (key_states * cos) + (self._rotate_half(key_states) * sin)
|
| 19 |
-
|
| 20 |
-
@staticmethod
|
| 21 |
-
def _rerotate_cos_sin(x, inv_freq, important_pos_batch):
|
| 22 |
-
B, H, L = important_pos_batch.shape
|
| 23 |
-
device = important_pos_batch.device
|
| 24 |
-
device_type = x.device.type
|
| 25 |
-
dtype = x.dtype
|
| 26 |
-
idx = torch.arange(0, L, device=device)
|
| 27 |
-
idx = idx.unsqueeze(0)
|
| 28 |
-
inv_freq = inv_freq[None, None, :, None].float().expand(B, H, -1, 1) # (B, H, M, 1)
|
| 29 |
-
idx = idx[:, None, :].float().expand(B, H, L) # (B, H, L)
|
| 30 |
-
delta_pos = idx - important_pos_batch
|
| 31 |
-
delta_pos = delta_pos.unsqueeze(2) # (B, H, 1, L)
|
| 32 |
-
|
| 33 |
-
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 34 |
-
|
| 35 |
-
with torch.autocast(device_type=device_type, enabled=False):
|
| 36 |
-
freqs = delta_pos.float() * inv_freq.float()
|
| 37 |
-
freqs = freqs.transpose(2, 3)
|
| 38 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
| 39 |
-
cos = emb.cos().contiguous()
|
| 40 |
-
sin = emb.sin().contiguous()
|
| 41 |
-
return cos.to(dtype=dtype), sin.to(dtype=dtype)
|
| 42 |
-
|
| 43 |
-
@staticmethod
|
| 44 |
-
def gather_important_tokens(states, indices):
|
| 45 |
-
return torch.gather(states, 2, indices.unsqueeze(-1).expand(-1, -1, -1, states.size(3))).contiguous()
|
| 46 |
-
|
| 47 |
-
def compress_cache(self, layer_index, important_pos, inv_freq):
|
| 48 |
-
new_length = important_pos.size(2)
|
| 49 |
-
new_cos, new_sin = self._rerotate_cos_sin(self.key_cache[layer_index], inv_freq, important_pos)
|
| 50 |
-
gathered_keys = self.gather_important_tokens(self.key_cache[layer_index], important_pos).clone()
|
| 51 |
-
self.key_cache[layer_index] = self._apply_key_rotary_pos_emb(gathered_keys, new_cos, new_sin)
|
| 52 |
-
gathered_values = self.gather_important_tokens(self.value_cache[layer_index], important_pos).clone()
|
| 53 |
-
self.value_cache[layer_index] = gathered_values
|
| 54 |
-
self._seen_tokens = new_length
|
| 55 |
-
|
| 56 |
-
def save(self, path: str):
|
| 57 |
-
"""Save the cache to disk, moving tensors to CPU."""
|
| 58 |
-
try:
|
| 59 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 60 |
-
torch.save(
|
| 61 |
-
{"key_cache": [k.cpu() for k in self.key_cache], "value_cache": [v.cpu() for v in self.value_cache]},
|
| 62 |
-
path,
|
| 63 |
-
)
|
| 64 |
-
except Exception as e:
|
| 65 |
-
print(f"Error occurred while saving: {e}")
|
| 66 |
-
|
| 67 |
-
@classmethod
|
| 68 |
-
def load(cls, path: str, device: str = "cpu") -> "FinchCache":
|
| 69 |
-
"""Load the cache from disk and move tensors to the specified device."""
|
| 70 |
-
data = torch.load(path, map_location=device)
|
| 71 |
-
cache = cls()
|
| 72 |
-
cache.key_cache = [k.to(device) for k in data["key_cache"]]
|
| 73 |
-
cache.value_cache = [v.to(device) for v in data["value_cache"]]
|
| 74 |
-
cache._seen_tokens = cache.value_cache[0].size(2) if cache.value_cache else 0
|
| 75 |
-
return cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
global_compression.py
DELETED
|
@@ -1,211 +0,0 @@
|
|
| 1 |
-
import math
|
| 2 |
-
import torch
|
| 3 |
-
from cache import FinchCache
|
| 4 |
-
from utils import repeat_kv
|
| 5 |
-
from transformers.models.llama.modeling_llama import rotate_half
|
| 6 |
-
import spaces
|
| 7 |
-
|
| 8 |
-
@spaces.GPU
|
| 9 |
-
def get_compressed_kv_cache(model, sink_tokens, step_size, target_token_size, context_ids, context_attention_mask, question_ids, question_attention_mask):
|
| 10 |
-
device = model.device
|
| 11 |
-
dtype = model.dtype
|
| 12 |
-
sink_tokens = sink_tokens
|
| 13 |
-
num_chunks = step_size
|
| 14 |
-
context_ids = context_ids.to(device)
|
| 15 |
-
context_attention_mask = context_attention_mask.to(device)
|
| 16 |
-
question_ids = question_ids.to(device)
|
| 17 |
-
question_attention_mask = question_attention_mask.to(device)
|
| 18 |
-
question_len = question_ids.size(1)
|
| 19 |
-
total_len = context_ids.size(1)
|
| 20 |
-
max_context_tokens_allowed = model.config.max_position_embeddings - question_len
|
| 21 |
-
if total_len > max_context_tokens_allowed:
|
| 22 |
-
num_chunks = max(step_size, math.ceil(total_len / max_context_tokens_allowed))
|
| 23 |
-
|
| 24 |
-
if total_len <= sink_tokens or num_chunks == 1:
|
| 25 |
-
# If the context is too short or only one chunk is desired, use the entire context.
|
| 26 |
-
context_ids_list = [context_ids]
|
| 27 |
-
context_attention_mask_list = [context_attention_mask]
|
| 28 |
-
else:
|
| 29 |
-
# Calculate how many tokens remain after the sink tokens.
|
| 30 |
-
remainder_len = total_len - sink_tokens
|
| 31 |
-
|
| 32 |
-
# Compute the base tokens per chunk and any leftover.
|
| 33 |
-
base = remainder_len // num_chunks
|
| 34 |
-
leftover = remainder_len % num_chunks
|
| 35 |
-
|
| 36 |
-
# Build a list of chunk sizes.
|
| 37 |
-
# First chunk gets the sink tokens plus base tokens.
|
| 38 |
-
chunk_sizes = [sink_tokens + base]
|
| 39 |
-
|
| 40 |
-
# Chunks 2 to num_chunks-1 get base tokens each.
|
| 41 |
-
for _ in range(num_chunks - 2):
|
| 42 |
-
chunk_sizes.append(base)
|
| 43 |
-
|
| 44 |
-
# The last chunk gets the remaining tokens (base + leftover).
|
| 45 |
-
if num_chunks > 1:
|
| 46 |
-
chunk_sizes.append(base + leftover)
|
| 47 |
-
|
| 48 |
-
# Now slice the context using the calculated sizes.
|
| 49 |
-
context_ids_list = []
|
| 50 |
-
context_attention_mask_list = []
|
| 51 |
-
offset = 0
|
| 52 |
-
for size in chunk_sizes:
|
| 53 |
-
end = offset + size
|
| 54 |
-
context_ids_list.append(context_ids[:, offset:end])
|
| 55 |
-
context_attention_mask_list.append(context_attention_mask[:, offset:end])
|
| 56 |
-
offset = end
|
| 57 |
-
|
| 58 |
-
# (Optional) Continue with the rest of your processing…
|
| 59 |
-
len_rest = max(total_len - sink_tokens, 1)
|
| 60 |
-
compression_factor = len_rest // target_token_size
|
| 61 |
-
if compression_factor < 1:
|
| 62 |
-
compression_factor = 1
|
| 63 |
-
|
| 64 |
-
tokenized_doc_chunks = []
|
| 65 |
-
for ids_chunk, mask_chunk in zip(context_ids_list, context_attention_mask_list):
|
| 66 |
-
tokenized_doc_chunks.append({"input_ids": ids_chunk, "attention_mask": mask_chunk})
|
| 67 |
-
|
| 68 |
-
print("Number of chunks: ", len(tokenized_doc_chunks))
|
| 69 |
-
|
| 70 |
-
rotary_emb = model.model.rotary_emb.to(device)
|
| 71 |
-
inv_freq = rotary_emb.inv_freq
|
| 72 |
-
batch_size = question_ids.size(0)
|
| 73 |
-
ones_mask = torch.ones(batch_size, 1, dtype=question_attention_mask.dtype, device=device)
|
| 74 |
-
|
| 75 |
-
cache = FinchCache()
|
| 76 |
-
past_cache_len = 0
|
| 77 |
-
past_attention_mask = torch.zeros(batch_size, 0, dtype=question_attention_mask.dtype, device=device)
|
| 78 |
-
num_chunks = len(tokenized_doc_chunks)
|
| 79 |
-
|
| 80 |
-
# Prepare a shared dictionary for hook outputs.
|
| 81 |
-
query_context_matrices = {}
|
| 82 |
-
|
| 83 |
-
# Define a hook function that uses a per-chunk offset stored on self.
|
| 84 |
-
def query_hook_fn(module, input, output):
|
| 85 |
-
layer_idx = getattr(module, "layer_idx", None)
|
| 86 |
-
if layer_idx is not None:
|
| 87 |
-
query_states = output.detach()
|
| 88 |
-
bsz, seq_len, hidden_dim = query_states.size()
|
| 89 |
-
num_query_heads = module.num_query_heads
|
| 90 |
-
head_dim = hidden_dim // num_query_heads
|
| 91 |
-
query_states = (
|
| 92 |
-
query_states.view(bsz, seq_len, num_query_heads, head_dim)
|
| 93 |
-
.transpose(1, 2)
|
| 94 |
-
.contiguous()
|
| 95 |
-
)
|
| 96 |
-
# Use self._current_chunk_offset to select only the new tokens.
|
| 97 |
-
query_context_matrices[layer_idx] = query_states[:, :, _current_chunk_offset:, :].clone()
|
| 98 |
-
|
| 99 |
-
# Pre-register hooks for all layers only once.
|
| 100 |
-
hooks = []
|
| 101 |
-
for i, layer in enumerate(model.model.layers):
|
| 102 |
-
layer.self_attn.q_proj.layer_idx = i # For tracking.
|
| 103 |
-
layer.self_attn.q_proj.num_query_heads = layer.self_attn.config.num_attention_heads
|
| 104 |
-
hook = layer.self_attn.q_proj.register_forward_hook(query_hook_fn)
|
| 105 |
-
hooks.append(hook)
|
| 106 |
-
|
| 107 |
-
# Process each document chunk sequentially.
|
| 108 |
-
for j, tokenized_doc_chunk in enumerate(tokenized_doc_chunks):
|
| 109 |
-
current_seq_length = tokenized_doc_chunk["input_ids"].size(1)
|
| 110 |
-
# Save the offset in an attribute the hook can access.
|
| 111 |
-
_current_chunk_offset = current_seq_length
|
| 112 |
-
# Clear the dictionary from any previous chunk.
|
| 113 |
-
query_context_matrices.clear()
|
| 114 |
-
|
| 115 |
-
# These chunks are already on the device.
|
| 116 |
-
chunk_input_ids = tokenized_doc_chunk["input_ids"].contiguous()
|
| 117 |
-
chunk_attention_mask = tokenized_doc_chunk["attention_mask"].contiguous()
|
| 118 |
-
segment_attention_mask = torch.cat(
|
| 119 |
-
[past_attention_mask, chunk_attention_mask, ones_mask], dim=-1
|
| 120 |
-
).contiguous()
|
| 121 |
-
current_input_ids = torch.cat([chunk_input_ids, question_ids], dim=-1).contiguous()
|
| 122 |
-
current_attention_mask = torch.cat([segment_attention_mask, question_attention_mask], dim=-1).contiguous()
|
| 123 |
-
|
| 124 |
-
past_seen_tokens = cache.get_seq_length() if cache is not None else 0
|
| 125 |
-
cache_position = torch.arange(
|
| 126 |
-
past_seen_tokens + chunk_input_ids.shape[1],
|
| 127 |
-
past_seen_tokens + current_input_ids.shape[1],
|
| 128 |
-
device=device
|
| 129 |
-
)
|
| 130 |
-
causal_mask = model.model._prepare_4d_causal_attention_mask_with_cache_position(
|
| 131 |
-
current_attention_mask,
|
| 132 |
-
sequence_length=question_ids.size(1),
|
| 133 |
-
target_length=current_attention_mask.size(-1),
|
| 134 |
-
dtype=dtype,
|
| 135 |
-
device=device,
|
| 136 |
-
cache_position=cache_position,
|
| 137 |
-
batch_size=current_input_ids.size(0),
|
| 138 |
-
).contiguous()
|
| 139 |
-
|
| 140 |
-
with torch.no_grad():
|
| 141 |
-
outputs = model.model(
|
| 142 |
-
input_ids=current_input_ids,
|
| 143 |
-
use_cache=True,
|
| 144 |
-
past_key_values=cache,
|
| 145 |
-
)
|
| 146 |
-
cache = outputs.past_key_values
|
| 147 |
-
|
| 148 |
-
len_question = question_ids.size(1)
|
| 149 |
-
# Now, for each transformer layer, update the cache using the query/key attention.
|
| 150 |
-
for layer_idx in range(len(model.model.layers)):
|
| 151 |
-
key_matrix = cache.key_cache[layer_idx]
|
| 152 |
-
query_matrix = query_context_matrices[layer_idx]
|
| 153 |
-
layer_cache_pos = torch.arange(
|
| 154 |
-
past_cache_len + current_seq_length,
|
| 155 |
-
past_cache_len + current_seq_length + len_question,
|
| 156 |
-
device=device
|
| 157 |
-
)
|
| 158 |
-
position_ids = layer_cache_pos.unsqueeze(0)
|
| 159 |
-
cos, sin = rotary_emb(query_matrix, position_ids)
|
| 160 |
-
cos = cos.unsqueeze(1)
|
| 161 |
-
sin = sin.unsqueeze(1)
|
| 162 |
-
query_matrix = (query_matrix * cos) + (rotate_half(query_matrix) * sin)
|
| 163 |
-
num_repeats = model.config.num_attention_heads // model.config.num_key_value_heads
|
| 164 |
-
key_matrix = repeat_kv(key_matrix, num_repeats)
|
| 165 |
-
|
| 166 |
-
scaling = math.sqrt(model.config.head_dim)
|
| 167 |
-
attention_matrix = torch.matmul(query_matrix, key_matrix.transpose(2, 3)) / scaling
|
| 168 |
-
causal_mask_sliced = causal_mask[:, :, :, : key_matrix.shape[-2]]
|
| 169 |
-
attention_matrix = attention_matrix + causal_mask_sliced
|
| 170 |
-
attention_matrix = torch.nn.functional.softmax(attention_matrix, dim=-1, dtype=torch.float32).to(query_matrix.dtype)
|
| 171 |
-
# Normalization
|
| 172 |
-
tol = 1e-8
|
| 173 |
-
binary_mask = (torch.abs(causal_mask_sliced.to(torch.float32)) < tol).to(torch.float32)
|
| 174 |
-
non_zero_counts = binary_mask.sum(dim=3, keepdim=True)
|
| 175 |
-
non_zero_counts = torch.clamp_min(non_zero_counts, 1.0).to(attention_matrix.dtype)
|
| 176 |
-
attention_matrix = attention_matrix / non_zero_counts
|
| 177 |
-
if j != num_chunks - 1:
|
| 178 |
-
attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length].clone().contiguous()
|
| 179 |
-
else:
|
| 180 |
-
attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length + len_question].clone().contiguous()
|
| 181 |
-
attention_matrix = torch.sum(attention_matrix, dim=-2)
|
| 182 |
-
attention_matrix = attention_matrix.view(
|
| 183 |
-
attention_matrix.size(0), model.config.num_key_value_heads, num_repeats, -1
|
| 184 |
-
).sum(dim=2)
|
| 185 |
-
full_context_size = attention_matrix.size(-1)
|
| 186 |
-
attention_matrix[..., :sink_tokens] = float("inf")
|
| 187 |
-
if j == num_chunks - 1:
|
| 188 |
-
attention_matrix[..., -len_question:] = float("inf")
|
| 189 |
-
if j == 0:
|
| 190 |
-
k = int(sink_tokens + (max(0, current_seq_length - sink_tokens) // compression_factor))
|
| 191 |
-
k = min(k + past_cache_len, full_context_size)
|
| 192 |
-
elif j < num_chunks - 1:
|
| 193 |
-
to_keep_new = int(current_seq_length // compression_factor)
|
| 194 |
-
k = min(past_cache_len + to_keep_new, full_context_size)
|
| 195 |
-
else:
|
| 196 |
-
desired_final = sink_tokens + target_token_size + len_question# TODO remember to include the question tokens
|
| 197 |
-
k = desired_final if full_context_size >= desired_final else full_context_size
|
| 198 |
-
k = max(k, sink_tokens)
|
| 199 |
-
selected_indices = torch.topk(attention_matrix, k, dim=-1).indices
|
| 200 |
-
selected_indices, _ = torch.sort(selected_indices, dim=-1)
|
| 201 |
-
cache.compress_cache(layer_idx, selected_indices, inv_freq)
|
| 202 |
-
|
| 203 |
-
past_cache_len = cache._seen_tokens
|
| 204 |
-
past_attention_mask = torch.ones(1, past_cache_len, device=device)
|
| 205 |
-
|
| 206 |
-
# Remove the hooks once after all chunks are processed.
|
| 207 |
-
for hook in hooks:
|
| 208 |
-
hook.remove()
|
| 209 |
-
|
| 210 |
-
return cache
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess_document.py
DELETED
|
@@ -1,34 +0,0 @@
|
|
| 1 |
-
from langchain_docling import DoclingLoader
|
| 2 |
-
from langchain_docling.loader import ExportType
|
| 3 |
-
|
| 4 |
-
# Import required classes for building a custom converter
|
| 5 |
-
from docling.document_converter import DocumentConverter, PdfFormatOption, InputFormat
|
| 6 |
-
from docling.datamodel.pipeline_options import PdfPipelineOptions
|
| 7 |
-
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
| 8 |
-
import spaces
|
| 9 |
-
|
| 10 |
-
@spaces.GPU
|
| 11 |
-
def convert_to_markdown(file_objs, url, do_ocr, do_table_structure):
|
| 12 |
-
file_path = file_objs if file_objs is not None else url
|
| 13 |
-
pipeline_options = PdfPipelineOptions()
|
| 14 |
-
pipeline_options.do_ocr = do_ocr
|
| 15 |
-
pipeline_options.do_table_structure = do_table_structure
|
| 16 |
-
pdf_format_options = PdfFormatOption(
|
| 17 |
-
pipeline_options=pipeline_options,
|
| 18 |
-
backend=PyPdfiumDocumentBackend,
|
| 19 |
-
)
|
| 20 |
-
doc_converter = DocumentConverter(
|
| 21 |
-
allowed_formats=[InputFormat.PDF],
|
| 22 |
-
format_options={
|
| 23 |
-
InputFormat.PDF: pdf_format_options
|
| 24 |
-
}
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
# Pass the custom converter to the DoclingLoader.
|
| 28 |
-
loader = DoclingLoader(
|
| 29 |
-
file_path=file_path,
|
| 30 |
-
export_type=ExportType.MARKDOWN,
|
| 31 |
-
converter=doc_converter
|
| 32 |
-
)
|
| 33 |
-
docs = loader.load()
|
| 34 |
-
return docs[0].page_content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rag.py
DELETED
|
@@ -1,53 +0,0 @@
|
|
| 1 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 2 |
-
from langchain.schema.document import Document
|
| 3 |
-
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
| 4 |
-
from langchain_chroma import Chroma
|
| 5 |
-
import spaces
|
| 6 |
-
from langchain_text_splitters import MarkdownHeaderTextSplitter
|
| 7 |
-
import os
|
| 8 |
-
from transformers import AutoTokenizer
|
| 9 |
-
api_token = os.getenv("HF_TOKEN")
|
| 10 |
-
model_name = "meta-llama/Llama-3.1-8B-Instruct"
|
| 11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, token=api_token)
|
| 12 |
-
|
| 13 |
-
embedding_model = HuggingFaceBgeEmbeddings(
|
| 14 |
-
model_name="BAAI/bge-large-en-v1.5",
|
| 15 |
-
model_kwargs={"device": "cuda"},
|
| 16 |
-
encode_kwargs={"normalize_embeddings": True},
|
| 17 |
-
query_instruction=""
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
def create_rag_index(text_no_prefix):
|
| 22 |
-
"""Loads the PDF, splits its text, and builds a vectorstore for naive RAG."""
|
| 23 |
-
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
|
| 24 |
-
tokenizer,
|
| 25 |
-
chunk_size=256,
|
| 26 |
-
chunk_overlap=0,
|
| 27 |
-
add_start_index=True,
|
| 28 |
-
strip_whitespace=True,
|
| 29 |
-
separators=["\n\n", "\n", ".", " ", ""],
|
| 30 |
-
)
|
| 31 |
-
# Concatenate pages and create Document objects.
|
| 32 |
-
docs = [Document(page_content=x) for x in text_splitter.split_text(text_no_prefix)]
|
| 33 |
-
|
| 34 |
-
vectorstore = Chroma.from_documents(documents=docs, embedding=embedding_model)
|
| 35 |
-
return vectorstore
|
| 36 |
-
|
| 37 |
-
def run_naive_rag_query(vectorstore, query, rag_token_size, prefix, task, few_shot_examples):
|
| 38 |
-
"""
|
| 39 |
-
For naive RAG, retrieves top-k chunks (k based on target token size)
|
| 40 |
-
and generates an answer using those chunks.
|
| 41 |
-
"""
|
| 42 |
-
k = max(1, rag_token_size // 256)
|
| 43 |
-
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": k})
|
| 44 |
-
retrieved_docs = retriever.invoke(query)
|
| 45 |
-
for doc in retrieved_docs:
|
| 46 |
-
print("=================")
|
| 47 |
-
print(doc.page_content)
|
| 48 |
-
print("=================")
|
| 49 |
-
formatted_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
|
| 50 |
-
|
| 51 |
-
rag_context = prefix + "Retrieved context: \n" + formatted_context + task + few_shot_examples
|
| 52 |
-
|
| 53 |
-
return rag_context
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|