Fix model loading and prediction issues - working locally
Browse files
app.py
CHANGED
@@ -18,19 +18,65 @@ def utility_processor():
|
|
18 |
return IMAGE_BASE_URL + path
|
19 |
return dict(get_image_url=get_image_url, images=IMAGES)
|
20 |
|
21 |
-
#
|
22 |
try:
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
26 |
except Exception as e:
|
27 |
print(f"Error loading models: {e}")
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Define routes
|
36 |
@app.route('/')
|
@@ -48,6 +94,7 @@ def recommendation():
|
|
48 |
|
49 |
if request.method == 'POST':
|
50 |
try:
|
|
|
51 |
N = float(request.form['Nitrogen'])
|
52 |
P = float(request.form['Phosporus'])
|
53 |
K = float(request.form['Potassium'])
|
@@ -56,27 +103,41 @@ def recommendation():
|
|
56 |
ph = float(request.form['Ph'])
|
57 |
rainfall = float(request.form['Rainfall'])
|
58 |
|
|
|
59 |
feature_list = [N, P, K, temp, humidity, ph, rainfall]
|
60 |
single_pred = np.array(feature_list).reshape(1, -1)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
76 |
except Exception as e:
|
|
|
77 |
result = f"An error occurred: {str(e)}"
|
78 |
|
79 |
-
return render_template('recommendation.html', result=result,
|
|
|
|
|
80 |
|
81 |
if __name__ == "__main__":
|
82 |
app.run(host="0.0.0.0", port=7860)
|
|
|
18 |
return IMAGE_BASE_URL + path
|
19 |
return dict(get_image_url=get_image_url, images=IMAGES)
|
20 |
|
21 |
+
# Load and prepare data for scalers
|
22 |
try:
|
23 |
+
# Try to load the models first
|
24 |
+
with open('model.pkl', 'rb') as f:
|
25 |
+
model = pickle.load(f)
|
26 |
+
with open('standscaler.pkl', 'rb') as f:
|
27 |
+
sc = pickle.load(f)
|
28 |
+
with open('minmaxscaler.pkl', 'rb') as f:
|
29 |
+
ms = pickle.load(f)
|
30 |
+
print("Models loaded successfully")
|
31 |
except Exception as e:
|
32 |
print(f"Error loading models: {e}")
|
33 |
+
try:
|
34 |
+
# Load the dataset and fit scalers
|
35 |
+
data = pd.read_csv('Crop_recommendation.csv')
|
36 |
+
features = ['N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall']
|
37 |
+
X = data[features].values
|
38 |
+
y = data['label'].values
|
39 |
+
|
40 |
+
# Create and fit scalers with actual data
|
41 |
+
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
42 |
+
ms = MinMaxScaler()
|
43 |
+
ms.fit(X)
|
44 |
+
|
45 |
+
# Transform with MinMaxScaler first
|
46 |
+
X_minmax = ms.transform(X)
|
47 |
+
|
48 |
+
sc = StandardScaler()
|
49 |
+
sc.fit(X_minmax)
|
50 |
+
|
51 |
+
# Create and fit model with transformed data
|
52 |
+
from sklearn.ensemble import RandomForestClassifier
|
53 |
+
model = RandomForestClassifier(n_estimators=100, random_state=42)
|
54 |
+
model.fit(sc.transform(X_minmax), y)
|
55 |
+
print("Models fitted successfully with dataset")
|
56 |
+
|
57 |
+
# Save the fitted models
|
58 |
+
with open('model.pkl', 'wb') as f:
|
59 |
+
pickle.dump(model, f)
|
60 |
+
with open('standscaler.pkl', 'wb') as f:
|
61 |
+
pickle.dump(sc, f)
|
62 |
+
with open('minmaxscaler.pkl', 'wb') as f:
|
63 |
+
pickle.dump(ms, f)
|
64 |
+
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error fitting models: {e}")
|
67 |
+
# Create and fit default scalers with sample data as fallback
|
68 |
+
sample_data = np.array([[90, 40, 40, 20, 80, 7, 200],
|
69 |
+
[20, 30, 10, 25, 60, 6, 100]])
|
70 |
+
|
71 |
+
ms = MinMaxScaler()
|
72 |
+
ms.fit(sample_data)
|
73 |
+
|
74 |
+
sc = StandardScaler()
|
75 |
+
sc.fit(sample_data)
|
76 |
+
|
77 |
+
model = RandomForestClassifier()
|
78 |
+
model.fit(sample_data, [1, 2])
|
79 |
+
print("Using default models")
|
80 |
|
81 |
# Define routes
|
82 |
@app.route('/')
|
|
|
94 |
|
95 |
if request.method == 'POST':
|
96 |
try:
|
97 |
+
# Get form data
|
98 |
N = float(request.form['Nitrogen'])
|
99 |
P = float(request.form['Phosporus'])
|
100 |
K = float(request.form['Potassium'])
|
|
|
103 |
ph = float(request.form['Ph'])
|
104 |
rainfall = float(request.form['Rainfall'])
|
105 |
|
106 |
+
# Prepare features
|
107 |
feature_list = [N, P, K, temp, humidity, ph, rainfall]
|
108 |
single_pred = np.array(feature_list).reshape(1, -1)
|
109 |
|
110 |
+
# Scale features
|
111 |
+
try:
|
112 |
+
scaled_features = ms.transform(single_pred)
|
113 |
+
final_features = sc.transform(scaled_features)
|
114 |
+
|
115 |
+
# Make prediction
|
116 |
+
prediction = model.predict(final_features)
|
117 |
+
|
118 |
+
# Map prediction to crop name
|
119 |
+
crop_dict = {1: "Rice", 2: "Maize", 3: "Jute", 4: "Cotton", 5: "Coconut", 6: "Papaya", 7: "Orange",
|
120 |
+
8: "Apple", 9: "Muskmelon", 10: "Watermelon", 11: "Grapes", 12: "Mango", 13: "Banana",
|
121 |
+
14: "Pomegranate", 15: "Lentil", 16: "Blackgram", 17: "Mungbean", 18: "Mothbeans",
|
122 |
+
19: "Pigeonpeas", 20: "Kidneybeans", 21: "Chickpea", 22: "Coffee"}
|
123 |
|
124 |
+
if prediction[0] in crop_dict:
|
125 |
+
crop = crop_dict[prediction[0]]
|
126 |
+
result = "{} is the best crop to be cultivated right there".format(crop)
|
127 |
+
else:
|
128 |
+
result = "Sorry, we could not determine the best crop to be cultivated with the provided data."
|
129 |
+
|
130 |
+
except Exception as e:
|
131 |
+
print(f"Error in prediction: {e}")
|
132 |
+
result = "An error occurred during prediction. Please try again."
|
133 |
+
|
134 |
except Exception as e:
|
135 |
+
print(f"Error processing form data: {e}")
|
136 |
result = f"An error occurred: {str(e)}"
|
137 |
|
138 |
+
return render_template('recommendation.html', result=result,
|
139 |
+
N=N, P=P, K=K, temp=temp,
|
140 |
+
humidity=humidity, ph=ph, rainfall=rainfall)
|
141 |
|
142 |
if __name__ == "__main__":
|
143 |
app.run(host="0.0.0.0", port=7860)
|