{
"cells": [
{
"cell_type": "markdown",
"id": "6bdfd636",
"metadata": {},
"source": [
"# Import Libaries"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "7bee9b73",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"id": "2822305c",
"metadata": {},
"source": [
"# Importing Data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5b6f8884",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" N | \n",
" P | \n",
" K | \n",
" temperature | \n",
" humidity | \n",
" ph | \n",
" rainfall | \n",
" label | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 90 | \n",
" 42 | \n",
" 43 | \n",
" 20.879744 | \n",
" 82.002744 | \n",
" 6.502985 | \n",
" 202.935536 | \n",
" rice | \n",
"
\n",
" \n",
" 1 | \n",
" 85 | \n",
" 58 | \n",
" 41 | \n",
" 21.770462 | \n",
" 80.319644 | \n",
" 7.038096 | \n",
" 226.655537 | \n",
" rice | \n",
"
\n",
" \n",
" 2 | \n",
" 60 | \n",
" 55 | \n",
" 44 | \n",
" 23.004459 | \n",
" 82.320763 | \n",
" 7.840207 | \n",
" 263.964248 | \n",
" rice | \n",
"
\n",
" \n",
" 3 | \n",
" 74 | \n",
" 35 | \n",
" 40 | \n",
" 26.491096 | \n",
" 80.158363 | \n",
" 6.980401 | \n",
" 242.864034 | \n",
" rice | \n",
"
\n",
" \n",
" 4 | \n",
" 78 | \n",
" 42 | \n",
" 42 | \n",
" 20.130175 | \n",
" 81.604873 | \n",
" 7.628473 | \n",
" 262.717340 | \n",
" rice | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" N P K temperature humidity ph rainfall label\n",
"0 90 42 43 20.879744 82.002744 6.502985 202.935536 rice\n",
"1 85 58 41 21.770462 80.319644 7.038096 226.655537 rice\n",
"2 60 55 44 23.004459 82.320763 7.840207 263.964248 rice\n",
"3 74 35 40 26.491096 80.158363 6.980401 242.864034 rice\n",
"4 78 42 42 20.130175 81.604873 7.628473 262.717340 rice"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"crop = pd.read_csv(\"Crop_recommendation.csv\")\n",
"crop.head()"
]
},
{
"cell_type": "markdown",
"id": "e9ddfb22",
"metadata": {},
"source": [
"# Asq Six Question to yourself"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "3ca70c00",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(2200, 8)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"crop.shape"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e2ae9b60",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 2200 entries, 0 to 2199\n",
"Data columns (total 8 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 N 2200 non-null int64 \n",
" 1 P 2200 non-null int64 \n",
" 2 K 2200 non-null int64 \n",
" 3 temperature 2200 non-null float64\n",
" 4 humidity 2200 non-null float64\n",
" 5 ph 2200 non-null float64\n",
" 6 rainfall 2200 non-null float64\n",
" 7 label 2200 non-null object \n",
"dtypes: float64(4), int64(3), object(1)\n",
"memory usage: 137.6+ KB\n"
]
}
],
"source": [
"crop.info()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9efad4c4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"N 0\n",
"P 0\n",
"K 0\n",
"temperature 0\n",
"humidity 0\n",
"ph 0\n",
"rainfall 0\n",
"label 0\n",
"dtype: int64"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"crop.isnull().sum()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1f7bf8c5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"crop.duplicated().sum()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3d5b7413",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" N | \n",
" P | \n",
" K | \n",
" temperature | \n",
" humidity | \n",
" ph | \n",
" rainfall | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 2200.000000 | \n",
" 2200.000000 | \n",
" 2200.000000 | \n",
" 2200.000000 | \n",
" 2200.000000 | \n",
" 2200.000000 | \n",
" 2200.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 50.551818 | \n",
" 53.362727 | \n",
" 48.149091 | \n",
" 25.616244 | \n",
" 71.481779 | \n",
" 6.469480 | \n",
" 103.463655 | \n",
"
\n",
" \n",
" std | \n",
" 36.917334 | \n",
" 32.985883 | \n",
" 50.647931 | \n",
" 5.063749 | \n",
" 22.263812 | \n",
" 0.773938 | \n",
" 54.958389 | \n",
"
\n",
" \n",
" min | \n",
" 0.000000 | \n",
" 5.000000 | \n",
" 5.000000 | \n",
" 8.825675 | \n",
" 14.258040 | \n",
" 3.504752 | \n",
" 20.211267 | \n",
"
\n",
" \n",
" 25% | \n",
" 21.000000 | \n",
" 28.000000 | \n",
" 20.000000 | \n",
" 22.769375 | \n",
" 60.261953 | \n",
" 5.971693 | \n",
" 64.551686 | \n",
"
\n",
" \n",
" 50% | \n",
" 37.000000 | \n",
" 51.000000 | \n",
" 32.000000 | \n",
" 25.598693 | \n",
" 80.473146 | \n",
" 6.425045 | \n",
" 94.867624 | \n",
"
\n",
" \n",
" 75% | \n",
" 84.250000 | \n",
" 68.000000 | \n",
" 49.000000 | \n",
" 28.561654 | \n",
" 89.948771 | \n",
" 6.923643 | \n",
" 124.267508 | \n",
"
\n",
" \n",
" max | \n",
" 140.000000 | \n",
" 145.000000 | \n",
" 205.000000 | \n",
" 43.675493 | \n",
" 99.981876 | \n",
" 9.935091 | \n",
" 298.560117 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" N P K temperature humidity \\\n",
"count 2200.000000 2200.000000 2200.000000 2200.000000 2200.000000 \n",
"mean 50.551818 53.362727 48.149091 25.616244 71.481779 \n",
"std 36.917334 32.985883 50.647931 5.063749 22.263812 \n",
"min 0.000000 5.000000 5.000000 8.825675 14.258040 \n",
"25% 21.000000 28.000000 20.000000 22.769375 60.261953 \n",
"50% 37.000000 51.000000 32.000000 25.598693 80.473146 \n",
"75% 84.250000 68.000000 49.000000 28.561654 89.948771 \n",
"max 140.000000 145.000000 205.000000 43.675493 99.981876 \n",
"\n",
" ph rainfall \n",
"count 2200.000000 2200.000000 \n",
"mean 6.469480 103.463655 \n",
"std 0.773938 54.958389 \n",
"min 3.504752 20.211267 \n",
"25% 5.971693 64.551686 \n",
"50% 6.425045 94.867624 \n",
"75% 6.923643 124.267508 \n",
"max 9.935091 298.560117 "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"crop.describe()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "1056bfba",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"label\n",
"rice 100\n",
"maize 100\n",
"jute 100\n",
"cotton 100\n",
"coconut 100\n",
"papaya 100\n",
"orange 100\n",
"apple 100\n",
"muskmelon 100\n",
"watermelon 100\n",
"grapes 100\n",
"mango 100\n",
"banana 100\n",
"pomegranate 100\n",
"lentil 100\n",
"blackgram 100\n",
"mungbean 100\n",
"mothbeans 100\n",
"pigeonpeas 100\n",
"kidneybeans 100\n",
"chickpea 100\n",
"coffee 100\n",
"Name: count, dtype: int64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"crop['label'].value_counts()"
]
},
{
"cell_type": "markdown",
"id": "3e3af150",
"metadata": {},
"source": [
"# Encoding"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8c35d395",
"metadata": {},
"outputs": [],
"source": [
"crop_dict = {\n",
" 'rice': 1,\n",
" 'maize': 2,\n",
" 'jute': 3,\n",
" 'cotton': 4,\n",
" 'coconut': 5,\n",
" 'papaya': 6,\n",
" 'orange': 7,\n",
" 'apple': 8,\n",
" 'muskmelon': 9,\n",
" 'watermelon': 10,\n",
" 'grapes': 11,\n",
" 'mango': 12,\n",
" 'banana': 13,\n",
" 'pomegranate': 14,\n",
" 'lentil': 15,\n",
" 'blackgram': 16,\n",
" 'mungbean': 17,\n",
" 'mothbeans': 18,\n",
" 'pigeonpeas': 19,\n",
" 'kidneybeans': 20,\n",
" 'chickpea': 21,\n",
" 'coffee': 22\n",
"}\n",
"crop['crop_num']= crop['label'].map(crop_dict)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "b1a53f7f",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" N | \n",
" P | \n",
" K | \n",
" temperature | \n",
" humidity | \n",
" ph | \n",
" rainfall | \n",
" label | \n",
" crop_num | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 90 | \n",
" 42 | \n",
" 43 | \n",
" 20.879744 | \n",
" 82.002744 | \n",
" 6.502985 | \n",
" 202.935536 | \n",
" rice | \n",
" 1 | \n",
"
\n",
" \n",
" 1 | \n",
" 85 | \n",
" 58 | \n",
" 41 | \n",
" 21.770462 | \n",
" 80.319644 | \n",
" 7.038096 | \n",
" 226.655537 | \n",
" rice | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" 60 | \n",
" 55 | \n",
" 44 | \n",
" 23.004459 | \n",
" 82.320763 | \n",
" 7.840207 | \n",
" 263.964248 | \n",
" rice | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" 74 | \n",
" 35 | \n",
" 40 | \n",
" 26.491096 | \n",
" 80.158363 | \n",
" 6.980401 | \n",
" 242.864034 | \n",
" rice | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" 78 | \n",
" 42 | \n",
" 42 | \n",
" 20.130175 | \n",
" 81.604873 | \n",
" 7.628473 | \n",
" 262.717340 | \n",
" rice | \n",
" 1 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 2195 | \n",
" 107 | \n",
" 34 | \n",
" 32 | \n",
" 26.774637 | \n",
" 66.413269 | \n",
" 6.780064 | \n",
" 177.774507 | \n",
" coffee | \n",
" 22 | \n",
"
\n",
" \n",
" 2196 | \n",
" 99 | \n",
" 15 | \n",
" 27 | \n",
" 27.417112 | \n",
" 56.636362 | \n",
" 6.086922 | \n",
" 127.924610 | \n",
" coffee | \n",
" 22 | \n",
"
\n",
" \n",
" 2197 | \n",
" 118 | \n",
" 33 | \n",
" 30 | \n",
" 24.131797 | \n",
" 67.225123 | \n",
" 6.362608 | \n",
" 173.322839 | \n",
" coffee | \n",
" 22 | \n",
"
\n",
" \n",
" 2198 | \n",
" 117 | \n",
" 32 | \n",
" 34 | \n",
" 26.272418 | \n",
" 52.127394 | \n",
" 6.758793 | \n",
" 127.175293 | \n",
" coffee | \n",
" 22 | \n",
"
\n",
" \n",
" 2199 | \n",
" 104 | \n",
" 18 | \n",
" 30 | \n",
" 23.603016 | \n",
" 60.396475 | \n",
" 6.779833 | \n",
" 140.937041 | \n",
" coffee | \n",
" 22 | \n",
"
\n",
" \n",
"
\n",
"
2200 rows × 9 columns
\n",
"
"
],
"text/plain": [
" N P K temperature humidity ph rainfall label \\\n",
"0 90 42 43 20.879744 82.002744 6.502985 202.935536 rice \n",
"1 85 58 41 21.770462 80.319644 7.038096 226.655537 rice \n",
"2 60 55 44 23.004459 82.320763 7.840207 263.964248 rice \n",
"3 74 35 40 26.491096 80.158363 6.980401 242.864034 rice \n",
"4 78 42 42 20.130175 81.604873 7.628473 262.717340 rice \n",
"... ... .. .. ... ... ... ... ... \n",
"2195 107 34 32 26.774637 66.413269 6.780064 177.774507 coffee \n",
"2196 99 15 27 27.417112 56.636362 6.086922 127.924610 coffee \n",
"2197 118 33 30 24.131797 67.225123 6.362608 173.322839 coffee \n",
"2198 117 32 34 26.272418 52.127394 6.758793 127.175293 coffee \n",
"2199 104 18 30 23.603016 60.396475 6.779833 140.937041 coffee \n",
"\n",
" crop_num \n",
"0 1 \n",
"1 1 \n",
"2 1 \n",
"3 1 \n",
"4 1 \n",
"... ... \n",
"2195 22 \n",
"2196 22 \n",
"2197 22 \n",
"2198 22 \n",
"2199 22 \n",
"\n",
"[2200 rows x 9 columns]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"crop"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "dff5caca",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" N | \n",
" P | \n",
" K | \n",
" temperature | \n",
" humidity | \n",
" ph | \n",
" rainfall | \n",
" crop_num | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 90 | \n",
" 42 | \n",
" 43 | \n",
" 20.879744 | \n",
" 82.002744 | \n",
" 6.502985 | \n",
" 202.935536 | \n",
" 1 | \n",
"
\n",
" \n",
" 1 | \n",
" 85 | \n",
" 58 | \n",
" 41 | \n",
" 21.770462 | \n",
" 80.319644 | \n",
" 7.038096 | \n",
" 226.655537 | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" 60 | \n",
" 55 | \n",
" 44 | \n",
" 23.004459 | \n",
" 82.320763 | \n",
" 7.840207 | \n",
" 263.964248 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" 74 | \n",
" 35 | \n",
" 40 | \n",
" 26.491096 | \n",
" 80.158363 | \n",
" 6.980401 | \n",
" 242.864034 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" 78 | \n",
" 42 | \n",
" 42 | \n",
" 20.130175 | \n",
" 81.604873 | \n",
" 7.628473 | \n",
" 262.717340 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" N P K temperature humidity ph rainfall crop_num\n",
"0 90 42 43 20.879744 82.002744 6.502985 202.935536 1\n",
"1 85 58 41 21.770462 80.319644 7.038096 226.655537 1\n",
"2 60 55 44 23.004459 82.320763 7.840207 263.964248 1\n",
"3 74 35 40 26.491096 80.158363 6.980401 242.864034 1\n",
"4 78 42 42 20.130175 81.604873 7.628473 262.717340 1"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"crop.drop(['label'],axis=1,inplace=True)\n",
"crop.head()"
]
},
{
"cell_type": "markdown",
"id": "a5494675",
"metadata": {},
"source": [
"# Train Test Split"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "5a049f55",
"metadata": {},
"outputs": [],
"source": [
"X = crop.drop(['crop_num'],axis=1)\n",
"y = crop['crop_num']"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "9d223a69",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" N | \n",
" P | \n",
" K | \n",
" temperature | \n",
" humidity | \n",
" ph | \n",
" rainfall | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 90 | \n",
" 42 | \n",
" 43 | \n",
" 20.879744 | \n",
" 82.002744 | \n",
" 6.502985 | \n",
" 202.935536 | \n",
"
\n",
" \n",
" 1 | \n",
" 85 | \n",
" 58 | \n",
" 41 | \n",
" 21.770462 | \n",
" 80.319644 | \n",
" 7.038096 | \n",
" 226.655537 | \n",
"
\n",
" \n",
" 2 | \n",
" 60 | \n",
" 55 | \n",
" 44 | \n",
" 23.004459 | \n",
" 82.320763 | \n",
" 7.840207 | \n",
" 263.964248 | \n",
"
\n",
" \n",
" 3 | \n",
" 74 | \n",
" 35 | \n",
" 40 | \n",
" 26.491096 | \n",
" 80.158363 | \n",
" 6.980401 | \n",
" 242.864034 | \n",
"
\n",
" \n",
" 4 | \n",
" 78 | \n",
" 42 | \n",
" 42 | \n",
" 20.130175 | \n",
" 81.604873 | \n",
" 7.628473 | \n",
" 262.717340 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 2195 | \n",
" 107 | \n",
" 34 | \n",
" 32 | \n",
" 26.774637 | \n",
" 66.413269 | \n",
" 6.780064 | \n",
" 177.774507 | \n",
"
\n",
" \n",
" 2196 | \n",
" 99 | \n",
" 15 | \n",
" 27 | \n",
" 27.417112 | \n",
" 56.636362 | \n",
" 6.086922 | \n",
" 127.924610 | \n",
"
\n",
" \n",
" 2197 | \n",
" 118 | \n",
" 33 | \n",
" 30 | \n",
" 24.131797 | \n",
" 67.225123 | \n",
" 6.362608 | \n",
" 173.322839 | \n",
"
\n",
" \n",
" 2198 | \n",
" 117 | \n",
" 32 | \n",
" 34 | \n",
" 26.272418 | \n",
" 52.127394 | \n",
" 6.758793 | \n",
" 127.175293 | \n",
"
\n",
" \n",
" 2199 | \n",
" 104 | \n",
" 18 | \n",
" 30 | \n",
" 23.603016 | \n",
" 60.396475 | \n",
" 6.779833 | \n",
" 140.937041 | \n",
"
\n",
" \n",
"
\n",
"
2200 rows × 7 columns
\n",
"
"
],
"text/plain": [
" N P K temperature humidity ph rainfall\n",
"0 90 42 43 20.879744 82.002744 6.502985 202.935536\n",
"1 85 58 41 21.770462 80.319644 7.038096 226.655537\n",
"2 60 55 44 23.004459 82.320763 7.840207 263.964248\n",
"3 74 35 40 26.491096 80.158363 6.980401 242.864034\n",
"4 78 42 42 20.130175 81.604873 7.628473 262.717340\n",
"... ... .. .. ... ... ... ...\n",
"2195 107 34 32 26.774637 66.413269 6.780064 177.774507\n",
"2196 99 15 27 27.417112 56.636362 6.086922 127.924610\n",
"2197 118 33 30 24.131797 67.225123 6.362608 173.322839\n",
"2198 117 32 34 26.272418 52.127394 6.758793 127.175293\n",
"2199 104 18 30 23.603016 60.396475 6.779833 140.937041\n",
"\n",
"[2200 rows x 7 columns]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d2601fcf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 1\n",
"1 1\n",
"2 1\n",
"3 1\n",
"4 1\n",
" ..\n",
"2195 22\n",
"2196 22\n",
"2197 22\n",
"2198 22\n",
"2199 22\n",
"Name: crop_num, Length: 2200, dtype: int64"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "c561ea31",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(2200,)"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y.shape"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "caba8efb",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "6774a9dd",
"metadata": {},
"outputs": [],
"source": [
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "41b6bcbb",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" N | \n",
" P | \n",
" K | \n",
" temperature | \n",
" humidity | \n",
" ph | \n",
" rainfall | \n",
"
\n",
" \n",
" \n",
" \n",
" 1656 | \n",
" 17 | \n",
" 16 | \n",
" 14 | \n",
" 16.396243 | \n",
" 92.181519 | \n",
" 6.625539 | \n",
" 102.944161 | \n",
"
\n",
" \n",
" 752 | \n",
" 37 | \n",
" 79 | \n",
" 19 | \n",
" 27.543848 | \n",
" 69.347863 | \n",
" 7.143943 | \n",
" 69.408782 | \n",
"
\n",
" \n",
" 892 | \n",
" 7 | \n",
" 73 | \n",
" 25 | \n",
" 27.521856 | \n",
" 63.132153 | \n",
" 7.288057 | \n",
" 45.208411 | \n",
"
\n",
" \n",
" 1041 | \n",
" 101 | \n",
" 70 | \n",
" 48 | \n",
" 25.360592 | \n",
" 75.031933 | \n",
" 6.012697 | \n",
" 116.553145 | \n",
"
\n",
" \n",
" 1179 | \n",
" 0 | \n",
" 17 | \n",
" 30 | \n",
" 35.474783 | \n",
" 47.972305 | \n",
" 6.279134 | \n",
" 97.790725 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1638 | \n",
" 10 | \n",
" 5 | \n",
" 5 | \n",
" 21.213070 | \n",
" 91.353492 | \n",
" 7.817846 | \n",
" 112.983436 | \n",
"
\n",
" \n",
" 1095 | \n",
" 108 | \n",
" 94 | \n",
" 47 | \n",
" 27.359116 | \n",
" 84.546250 | \n",
" 6.387431 | \n",
" 90.812505 | \n",
"
\n",
" \n",
" 1130 | \n",
" 11 | \n",
" 36 | \n",
" 31 | \n",
" 27.920633 | \n",
" 51.779659 | \n",
" 6.475449 | \n",
" 100.258567 | \n",
"
\n",
" \n",
" 1294 | \n",
" 11 | \n",
" 124 | \n",
" 204 | \n",
" 13.429886 | \n",
" 80.066340 | \n",
" 6.361141 | \n",
" 71.400430 | \n",
"
\n",
" \n",
" 860 | \n",
" 32 | \n",
" 78 | \n",
" 22 | \n",
" 23.970814 | \n",
" 62.355576 | \n",
" 7.007038 | \n",
" 53.409060 | \n",
"
\n",
" \n",
"
\n",
"
1760 rows × 7 columns
\n",
"
"
],
"text/plain": [
" N P K temperature humidity ph rainfall\n",
"1656 17 16 14 16.396243 92.181519 6.625539 102.944161\n",
"752 37 79 19 27.543848 69.347863 7.143943 69.408782\n",
"892 7 73 25 27.521856 63.132153 7.288057 45.208411\n",
"1041 101 70 48 25.360592 75.031933 6.012697 116.553145\n",
"1179 0 17 30 35.474783 47.972305 6.279134 97.790725\n",
"... ... ... ... ... ... ... ...\n",
"1638 10 5 5 21.213070 91.353492 7.817846 112.983436\n",
"1095 108 94 47 27.359116 84.546250 6.387431 90.812505\n",
"1130 11 36 31 27.920633 51.779659 6.475449 100.258567\n",
"1294 11 124 204 13.429886 80.066340 6.361141 71.400430\n",
"860 32 78 22 23.970814 62.355576 7.007038 53.409060\n",
"\n",
"[1760 rows x 7 columns]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X_train"
]
},
{
"cell_type": "markdown",
"id": "ab13cdf8",
"metadata": {},
"source": [
"\n",
"# Scale the features using MinMaxScaler"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "f19981a7",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.preprocessing import MinMaxScaler\n",
"ms = MinMaxScaler()\n",
"\n",
"X_train = ms.fit_transform(X_train)\n",
"X_test = ms.transform(X_test)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "f3f50c64",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[0.12142857, 0.07857143, 0.045 , ..., 0.9089898 , 0.48532225,\n",
" 0.29685161],\n",
" [0.26428571, 0.52857143, 0.07 , ..., 0.64257946, 0.56594073,\n",
" 0.17630752],\n",
" [0.05 , 0.48571429, 0.1 , ..., 0.57005802, 0.58835229,\n",
" 0.08931844],\n",
" ...,\n",
" [0.07857143, 0.22142857, 0.13 , ..., 0.43760347, 0.46198144,\n",
" 0.28719815],\n",
" [0.07857143, 0.85 , 0.995 , ..., 0.76763665, 0.44420505,\n",
" 0.18346657],\n",
" [0.22857143, 0.52142857, 0.085 , ..., 0.56099735, 0.54465022,\n",
" 0.11879596]])"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X_train"
]
},
{
"cell_type": "markdown",
"id": "752a08ae",
"metadata": {},
"source": [
"# Training Models"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "ac6ef55e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Support Vector Machine with accuracy: 0.9681818181818181\n",
"Confusion matrix: [[14 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 20 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]\n",
" [ 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 19 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 21 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 20 2 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17]]\n",
"==========================================================\n",
"K-Nearest Neighbors with accuracy: 0.9704545454545455\n",
"Confusion matrix: [[14 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 1 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 19 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 21 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 20 2 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17]]\n",
"==========================================================\n",
"Random Forest with accuracy: 0.9931818181818182\n",
"Confusion matrix: [[17 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 23 0 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0]\n",
" [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17]]\n",
"==========================================================\n"
]
}
],
"source": [
"from sklearn.svm import SVC\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.metrics import accuracy_score, confusion_matrix\n",
"\n",
"# create instances of only the selected models\n",
"models = {\n",
" 'Support Vector Machine': SVC(),\n",
" 'K-Nearest Neighbors': KNeighborsClassifier(),\n",
" 'Random Forest': RandomForestClassifier(),\n",
"}\n",
"\n",
"# iterate through the selected models\n",
"for name, model in models.items():\n",
" model.fit(X_train, y_train)\n",
" y_pred = model.predict(X_test)\n",
" \n",
" print(f\"{name} with accuracy: {accuracy_score(y_test, y_pred)}\")\n",
" print(\"Confusion matrix:\", confusion_matrix(y_test, y_pred))\n",
" print(\"==========================================================\")\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "e63aba03-0610-4864-87a1-7f755bdfaf07",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Support Vector Machine with accuracy: 0.9681818181818181\n",
"K-Nearest Neighbors with accuracy: 0.9704545454545455\n",
"Random Forest with accuracy: 0.9931818181818182\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAHUCAYAAABGRmklAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOEUlEQVR4nO3dd3QU1f//8demN5IQWigpQAyhhF6kKCUgSBeki8TQkY5SVED4iCBNRBSUkvBRuhQRpRlJEJD6IQiCgKGJgCASQi/J/P7gy/5cEiDBhEzg+Thnz2Hv3LnznmXk+No7c9diGIYhAAAAAACQ5eyyugAAAAAAAHAHIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AgCfY1KlTZbFYVKpUqawuJVv6888/NXToUIWGhsrDw0MuLi565pln1K9fPx0+fDiry8t0UVFRslgsOnbsWFaXAgBPDYthGEZWFwEAADJH2bJltWfPHknS1q1bVaVKlSyuKPvYvn27GjduLMMw1Lt3b1WtWlVOTk46ePCgvvzyS+3bt08XLlzI6jIz1blz5xQfH69y5crJ2dk5q8sBgKcCIR0AgCfUzp07ValSJTVq1Ejffvutunbtqs8//zyry0rV1atX5ebmltVlWCUmJqpYsWJydHTUli1bVKhQoRR9vvrqK7388stZUF3mu3btmlxcXGSxWLK6FAB46nC7OwAAT6jZs2dLksaNG6dq1app4cKFunr1aop+f/zxh7p16yY/Pz85OTmpQIECevnll/Xnn39a+yQkJGjQoEEqUqSInJ2dlTdvXjVs2FC//vqrJCkmJkYWi0UxMTE2Yx87dkwWi0VRUVHWtvDwcHl4eGjv3r164YUXlCNHDoWFhUmS1q9fr2bNmqlQoUJycXFRUFCQunfvrr/++itF3b/++qvatWunfPnyydnZWf7+/nr11Vd148YNHTt2TA4ODho7dmyK/TZu3CiLxaIlS5bc97ObOXOmzpw5o/Hjx6ca0CWlCOgrV65U1apV5ebmphw5cqhevXr66aefbPq8++67slgs+vnnn9WqVSt5eXnJx8dHAwcO1O3bt3Xw4EE1aNBAOXLkUGBgoMaPH2+z/93P+csvv9TAgQPl6+srV1dX1axZU7t377bpu3PnTrVt21aBgYFydXVVYGCg2rVrp+PHj9v0u3tL+7p16xQREaE8efLIzc1NN27cSPV29927d6tx48bKmzevnJ2dVaBAATVq1EgnT5609rl+/bqGDRumwoULy8nJSQULFtTrr7+uhIQEm2MHBgaqcePGWrNmjcqXLy9XV1eFhIRozpw59/27AYAnHSEdAIAn0LVr17RgwQJVqlRJpUqVUkREhC5dupQimP7xxx+qVKmSli9froEDB2r16tWaMmWKvLy8rLdyX7p0STVq1NBnn32m1157Td98841mzJih4OBgnT59+pHqu3nzppo2bao6dero66+/1qhRoyRJ8fHxqlq1qqZPn65169ZpxIgR2rZtm2rUqKFbt25Z99+zZ48qVaqkrVu3avTo0Vq9erXGjh2rGzdu6ObNmwoMDFTTpk01Y8YMJSUl2Rx72rRpKlCggF566aX71rdu3TrZ29urSZMmaTqf+fPnq1mzZvL09NSCBQs0e/ZsXbhwQbVq1dKmTZtS9G/durXKlCmjpUuXqmvXrvrwww81YMAANW/eXI0aNdLy5ctVp04dDRkyRMuWLUux/1tvvaUjR45o1qxZmjVrlk6dOqVatWrpyJEj1j7Hjh1TsWLFNGXKFK1du1YffPCBTp8+rUqVKqX6pUdERIQcHR31xRdf6KuvvpKjo2OKPleuXFG9evX0559/6pNPPtH69es1ZcoU+fv769KlS5IkwzDUvHlzTZw4UR07dtS3336rgQMHau7cuapTp45u3LhhM+aePXs0aNAgDRgwQF9//bVKly6tzp07a+PGjWn67AHgiWMAAIAnzn//+19DkjFjxgzDMAzj0qVLhoeHh/Hcc8/Z9IuIiDAcHR2N/fv333es0aNHG5KM9evX37fPhg0bDEnGhg0bbNqPHj1qSDIiIyOtbZ06dTIkGXPmzHngOSQnJxu3bt0yjh8/bkgyvv76a+u2OnXqGN7e3sbZs2cfWtPy5cutbX/88Yfh4OBgjBo16oHHDgkJMXx9fR/Y566kpCSjQIECRmhoqJGUlGRtv3TpkpE3b16jWrVq1raRI0cakoxJkybZjFG2bFlDkrFs2TJr261bt4w8efIYLVq0SHFO5cuXN5KTk63tx44dMxwdHY0uXbrct87bt28bly9fNtzd3Y2PPvrI2h4ZGWlIMl599dUU+9zddvToUcMwDGPnzp2GJGPFihX3Pc6aNWsMScb48eNt2hctWmRIMj7//HNrW0BAgOHi4mIcP37c2nbt2jXDx8fH6N69+32PAQBPMmbSAQB4As2ePVuurq5q27atJMnDw0OtWrXSjz/+aLMq+erVq1W7dm0VL178vmOtXr1awcHBqlu3bobW2LJlyxRtZ8+eVY8ePeTn5ycHBwc5OjoqICBAknTgwAFJd55fj42NVevWrZUnT577jl+rVi2VKVNGn3zyibVtxowZslgs6tatW4adx8GDB3Xq1Cl17NhRdnb//3+tPDw81LJlS23dujXFYwaNGze2eV+8eHFZLBa9+OKL1jYHBwcFBQWluD1dktq3b2/zvHhAQICqVaumDRs2WNsuX76sIUOGKCgoSA4ODnJwcJCHh4euXLli/Sz/KbW/j3sFBQUpZ86cGjJkiGbMmKH9+/en6PPDDz9IuvNYwz+1atVK7u7uio6OtmkvW7as/P39re9dXFwUHByc6nkDwNOAkA4AwBPmt99+08aNG9WoUSMZhqGEhAQlJCRYn6H+5/O+586du+8z1+npk15ubm7y9PS0aUtOTtYLL7ygZcuWafDgwYqOjtb27du1detWSXdu4ZekCxcuKCkpKU019e3bV9HR0Tp48KBu3bqlmTNn6uWXX5avr+8D9/P399e5c+d05cqVhx7j/PnzkqT8+fOn2FagQAElJyenWAXex8fH5r2Tk5Pc3Nzk4uKSov369espxk2tfl9fX2st0p0gP23aNHXp0kVr167V9u3btWPHDuXJk8f6Wf5TavXfy8vLS7GxsSpbtqzeeustlSxZUgUKFNDIkSOtjyOcP39eDg4OKb5AsVgsKWqUpFy5cqU4jrOzc6o1AsDTgJAOAMATZs6cOTIMQ1999ZVy5sxpfTVq1EiSNHfuXOtz2nny5LFZ8Cs1aelzN1ze+7xxas8+S0p11fB9+/Zpz549mjBhgvr06aNatWqpUqVKKUKcj4+P7O3tH1qTdCeo5sqVS5988omWLFmiM2fO6PXXX3/ofvXr11dSUpK++eabh/a9W19qz+efOnVKdnZ2ypkz50PHSY8zZ86k2na3losXL2rVqlUaPHiwhg4dqrCwMFWqVEmhoaH6+++/Ux0zrSu5h4aGauHChTp//rzi4uLUpk0bjR49WpMmTZJ05/O4ffu2zp07Z7OfYRg6c+aMcufOnZ5TBYCnDiEdAIAnSFJSkubOnauiRYtqw4YNKV6DBg3S6dOntXr1aknSiy++qA0bNujgwYP3HfPFF1/UoUOHrLcxpyYwMFCS9PPPP9u0r1y5Ms213w2J9/4e92effWbz/u5q5kuWLLnvlwB3ubi4qFu3bpo7d64mT56ssmXLqnr16g+tpXPnzvL19dXgwYP1xx9/pNrn7oJuxYoVU8GCBTV//nwZ//hl2ytXrmjp0qXWFd8z0oIFC2yOdfz4cW3ZskW1atWSdOezNAwjxWc5a9asFAvpPSqLxaIyZcroww8/lLe3t/73v/9JknWl/i+//NKm/9KlS3XlyhXrdgBA6hyyugAAAJBxVq9erVOnTumDDz6wBrZ/KlWqlKZNm6bZs2ercePG1pXRn3/+eb311lsKDQ1VQkKC1qxZo4EDByokJET9+/fXokWL1KxZMw0dOlSVK1fWtWvXFBsbq8aNG6t27dry9fVV3bp1NXbsWOXMmVMBAQGKjo5OdWXy+wkJCVHRokU1dOhQGYYhHx8fffPNN1q/fn2KvpMnT1aNGjVUpUoVDR06VEFBQfrzzz+1cuVKffbZZ8qRI4e1b69evTR+/Hjt2rVLs2bNSlMtXl5e+vrrr9W4cWOVK1dOvXv3VtWqVeXk5KTDhw/ryy+/1J49e9SiRQvZ2dlp/Pjx6tChgxo3bqzu3bvrxo0bmjBhghISEjRu3Lg0fwZpdfbsWb300kvq2rWrLl68qJEjR8rFxUXDhg2TJHl6eur555/XhAkTlDt3bgUGBio2NlazZ8+Wt7f3Ix931apV+vTTT9W8eXMVKVJEhmFo2bJlSkhIUL169SRJ9erVU/369TVkyBAlJiaqevXq+vnnnzVy5EiVK1dOHTt2zIiPAACeXFm3Zh0AAMhozZs3N5ycnB646nnbtm0NBwcH48yZM4ZhGMbvv/9uREREGL6+voajo6NRoEABo3Xr1saff/5p3efChQtGv379DH9/f8PR0dHImzev0ahRI+PXX3+19jl9+rTx8ssvGz4+PoaXl5fxyiuvWFcDv3d1d3d391Rr279/v1GvXj0jR44cRs6cOY1WrVoZJ06cMCQZI0eOTNG3VatWRq5cuQwnJyfD39/fCA8PN65fv55i3Fq1ahk+Pj7G1atX0/IxWp05c8YYMmSIUbJkScPNzc1wdnY2goKCjO7duxt79+616btixQqjSpUqhouLi+Hu7m6EhYUZmzdvtulzd3X3c+fO2bTf7zOpWbOmUbJkSev7u6u7f/HFF0bfvn2NPHnyGM7OzsZzzz1n7Ny502bfkydPGi1btjRy5sxp5MiRw2jQoIGxb98+IyAgwOjUqZO1390V3Hfs2JHi+Peu7v7rr78a7dq1M4oWLWq4uroaXl5eRuXKlY2oqCib/a5du2YMGTLECAgIMBwdHY38+fMbPXv2NC5cuGDTLyAgwGjUqFGq512zZs0U7QDwNLAYxj/ulQIAAHjCnD17VgEBAerTp4/Gjx+f1eX8KzExMapdu7aWLFliXQgQAPBk4XZ3AADwRDp58qSOHDmiCRMmyM7OTv369cvqkgAAeCgWjgMAAE+kWbNmqVatWvrll180b948FSxYMKtLAgDgobjdHQAAAAAAk2AmHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgtXdgXRITk7WqVOnlCNHDlkslqwuBwAAAEAWMQxDly5dUoECBWRnl3Hz34R0IB1OnTolPz+/rC4DAAAAgEn8/vvvKlSoUIaNR0gH0iFHjhyS7vyH6OnpmcXVAAAAAMgqiYmJ8vPzs2aEjEJIB9Lh7i3unp6ehHQAAAAAGf4YLAvHAQAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMwiGrCwCyI/9yQ2Sxd87qMgAAAAA8wIVDU7K6hHRjJh0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6TOvdd99V2bJlH9inVq1a6t+//2OpBwAAAAAyW5aG9LNnz6p79+7y9/eXs7OzfH19Vb9+ff30009ZWVa6xMTEyGKxKCEh4b59li5dKnt7e504cSLV7SEhIerbt++/riUwMFBTpkz51+PcT3h4uCwWi3r06JFiW69evWSxWBQeHp5px0/NsmXL9J///OexHhMAAAAAMkuWhvSWLVtqz549mjt3rg4dOqSVK1eqVq1a+vvvv7OyrDS7detWmvo1bdpUuXLl0ty5c1Ns27x5sw4ePKjOnTtndHmP7ObNm/fd5ufnp4ULF+ratWvWtuvXr2vBggXy9/d/HOXZ8PHxUY4cOR77cQEAAAAgM2RZSE9ISNCmTZv0wQcfqHbt2goICFDlypU1bNgwNWrUSJJ07NgxWSwWxcXF2exnsVgUExMj6f/PZH/77bcqU6aMXFxcVKVKFe3du9e6T1RUlLy9vbVixQoFBwfLxcVF9erV0++//25T0/Tp01W0aFE5OTmpWLFi+uKLL2y2WywWzZgxQ82aNZO7u7u6dOmi2rVrS5Jy5sx535lkR0dHdezYUVFRUTIMw2bbnDlzVKFCBZUpU0YXL15Ut27dlDdvXnl6eqpOnTras2ePTf+VK1eqYsWKcnFxUe7cudWiRQtJd277Pn78uAYMGCCLxSKLxWLdZ+nSpSpZsqScnZ0VGBioSZMm2YwZGBio9957T+Hh4fLy8lLXrl3v99em8uXLy9/fX8uWLbO2LVu2TH5+fipXrpxN3zVr1qhGjRry9vZWrly51LhxY8XHx9v0OXnypNq2bSsfHx+5u7urYsWK2rZtm02fL774QoGBgfLy8lLbtm116dIl67Z7b3cPDAzU+++/r4iICOXIkUP+/v76/PPPbcb7448/1KZNG+XMmVO5cuVSs2bNdOzYsfueMwAAAAA8LlkW0j08POTh4aEVK1boxo0b/3q8N998UxMnTtSOHTuUN29eNW3a1Gam++rVqxozZozmzp2rzZs3KzExUW3btrVuX758ufr166dBgwZp37596t69u1577TVt2LDB5jgjR45Us2bNtHfvXo0ePVpLly6VJB08eFCnT5/WRx99lGp9nTt31pEjRxQbG2ttu3LlihYvXqzOnTvLMAw1atRIZ86c0Xfffaddu3apfPnyCgsLs95Z8O2336pFixZq1KiRdu/erejoaFWsWFHSnaBcqFAhjR49WqdPn9bp06clSbt27VLr1q3Vtm1b7d27V++++66GDx+uqKgom/omTJigUqVKadeuXRo+fPgDP+vXXntNkZGR1vdz5sxRREREin5XrlzRwIEDtWPHDkVHR8vOzk4vvfSSkpOTJUmXL19WzZo1derUKa1cuVJ79uzR4MGDrdslKT4+XitWrNCqVau0atUqxcbGaty4cQ+sb9KkSapYsaJ2796tXr16qWfPnvr1118l3bkOateuLQ8PD23cuFGbNm2Sh4eHGjRokOodBDdu3FBiYqLNCwAAAAAyi0OWHdjBQVFRUeratatmzJih8uXLq2bNmmrbtq1Kly6d7vFGjhypevXqSZLmzp2rQoUKafny5WrdurWkO7emT5s2TVWqVLH2KV68uLZv367KlStr4sSJCg8PV69evSRJAwcO1NatWzVx4kTrbLkktW/f3iaQHj16VJKUN29eeXt737e+EiVKqEqVKoqMjFStWrUkSYsXL1ZSUpLatWunDRs2aO/evTp79qycnZ0lSRMnTtSKFSv01VdfqVu3bhozZozatm2rUaNGWcctU6aMpDu3fdvb2ytHjhzy9fW1bp88ebLCwsKswTs4OFj79+/XhAkTbGb969SpozfeeCNNn3XHjh01bNgw650Omzdv1sKFC613N9zVsmVLm/ezZ89W3rx5tX//fpUqVUrz58/XuXPntGPHDvn4+EiSgoKCbPZJTk5WVFSU9Zb2jh07Kjo6WmPGjLlvfQ0bNrT+PQ4ZMkQffvihYmJiFBISooULF8rOzk6zZs2y3m0QGRkpb29vxcTE6IUXXrAZa+zYsTafNwAAAABkpix/Jv3uLGr9+vUVExOj8uXLp5jlTYuqVata/+zj46NixYrpwIED1jYHBwfrrLN0Z7E2b29va58DBw6oevXqNmNWr17dZgxJNmOkV+fOnfXVV19Zb9eeM2eOWrRoIW9vb+3atUuXL19Wrly5rHcZeHh46OjRo9ZbxOPi4hQWFpauY97vvA4fPqykpKRHOq/cuXOrUaNGmjt3riIjI9WoUSPlzp07Rb/4+Hi1b99eRYoUkaenpwoXLixJ1gX04uLiVK5cOWtAT01gYKDNM+f58+fX2bNnH1jfP7/ksVgs8vX1te6za9cu/fbbb8qRI4f1M/bx8dH169dT3IovScOGDdPFixetr3sfkQAAAACAjJRlM+l33X0+vF69ehoxYoS6dOmikSNHKjw8XHZ2d75D+Odz3GldrE2SzXPZqb2/t+3e7YZhpGhzd3dP8/Hv1bZtWw0YMECLFi1SrVq1tGnTJo0ePVrSnRnj/Pnzp5iNlmSdoXd1dU33MVM7h3ufi5fSf14RERHq3bu3JOmTTz5JtU+TJk3k5+enmTNnqkCBAkpOTlapUqWst5Wn5XwcHR1t3lssFpvb4dO7T3JysipUqKB58+al2C9Pnjwp2pydna13NgAAAABAZjPd76SXKFFCV65ckfT/Q9Pd56sl2Swi909bt261/vnChQs6dOiQQkJCrG23b9/Wzp07re8PHjyohIQEa5/ixYtr06ZNNmNu2bJFxYsXf2C9Tk5OkmQzK30/OXLkUKtWrRQZGak5c+aoSJEi1lvfy5cvrzNnzsjBwUFBQUE2r7uz1KVLl1Z0dPQDa7m3jhIlSqR6XsHBwbK3t39ozfdz9xnumzdvqn79+im2nz9/XgcOHNA777yjsLAwFS9eXBcuXLDpU7p0acXFxT3W1fzLly+vw4cPK2/evCk+Zy8vr8dWBwAAAACkJstC+vnz51WnTh19+eWX+vnnn3X06FEtWbJE48ePV7NmzSTdmWl99tlnNW7cOO3fv18bN27UO++8k+p4o0ePVnR0tPbt26fw8HDlzp1bzZs3t253dHRUnz59tG3bNv3vf//Ta6+9pmeffVaVK1eWdGfhuaioKM2YMUOHDx/W5MmTtWzZsoc+px0QECCLxaJVq1bp3Llzunz58gP7d+7cWVu2bNH06dMVERFhneWuW7euqlatqubNm2vt2rU6duyYtmzZonfeecf65cLIkSO1YMECjRw5UgcOHNDevXs1fvx469iBgYHauHGj/vjjD/3111+SpEGDBik6Olr/+c9/dOjQIc2dO1fTpk1L8/Pn92Nvb68DBw7owIEDqYb9uyunf/755/rtt9/0ww8/aODAgTZ92rVrJ19fXzVv3lybN2/WkSNHtHTpUv3000//qrYH6dChg3Lnzq1mzZrpxx9/1NGjRxUbG6t+/frp5MmTmXZcAAAAAEiLLF3dvUqVKvrwww/1/PPPq1SpUho+fLi6du2qadOmWfvNmTNHt27dUsWKFdWvXz+99957qY43btw49evXTxUqVNDp06e1cuVK6yy3JLm5uWnIkCFq3769qlatKldXVy1cuNC6vXnz5vroo480YcIElSxZUp999pnNIm/3U7BgQY0aNUpDhw5Vvnz5rLeA30+NGjVUrFgxJSYmqlOnTtZ2i8Wi7777Ts8//7wiIiIUHBystm3b6tixY8qXL5+kOz83tmTJEq1cuVJly5ZVnTp1bH6ubPTo0Tp27JiKFi1qvQuhfPnyWrx4sRYuXKhSpUppxIgRGj16dKo/FZdenp6e8vT0THWbnZ2dFi5cqF27dqlUqVIaMGCAJkyYYNPHyclJ69atU968edWwYUOFhoZq3Lhx/2qG/2Hc3Ny0ceNG+fv7q0WLFipevLgiIiJ07dq1+54LAAAAADwuFiO1B5SzkZiYGNWuXVsXLly47+rqUVFR6t+/vxISEh5rbXjyJCYmysvLS15Feshiz7PqAAAAgJldODQl08a+mw0uXryYoRN+pnsmHQAAAACApxUhHQAAAAAAk8j2Ib1WrVoyDOO+t7pLUnh4OLe6AwAAAABML9uHdAAAAAAAnhSEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBIOWV0AkB2d2P2BPD09s7oMAAAAAE8YZtIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJh6wuAMiOvmhZWq4OfMcFAAAAZAcRq49kdQlpRsoAAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBIO6d3h/PnzGjFihDZs2KCzZ88qOTnZZvvff/+dYcUBAAAAAPA0SXdIf+WVVxQfH6/OnTsrX758slgsmVEXAAAAAABPnXSH9E2bNmnTpk0qU6ZMZtQDAAAAAMBTK93PpIeEhOjatWuZUQsAAAAAAE+1dIf0Tz/9VG+//bZiY2N1/vx5JSYm2rwAAAAAAMCjSfft7t7e3rp48aLq1Klj024YhiwWi5KSkjKsOAAAAAAAnibpDukdOnSQk5OT5s+fz8JxAAAAAABkoHSH9H379mn37t0qVqxYZtQDAAAAAMBTK93PpFesWFG///57ZtQCAAAAAMBTLd0z6X369FG/fv305ptvKjQ0VI6OjjbbS5cunWHFAQAAAADwNEl3SG/Tpo0kKSIiwtpmsVhYOA4AAAAAgH8p3SH96NGjmVEHAAAAAABPvXSH9ICAgMyoAwAAAACAp166Q7okHTp0SDExMTp79qySk5Ntto0YMSJDCgMAAAAA4GmT7pA+c+ZM9ezZU7lz55avr6/N76RbLBZCOgAAAAAAjyjdIf29997TmDFjNGTIkMyoBwAAAACAp1a6fyf9woULatWqVWbUAgAAAADAUy3dIb1Vq1Zat25dZtQCAAAAAMBTLU23u0+dOtX656CgIA0fPlxbt25VaGioHB0dbfr27ds3YysEAAAAAOApYTEMw3hYp8KFC6dtMItFR44c+ddFAWaVmJgoLy8vTasbIFeHdN+IAgAAACALRKzO+Jx6NxtcvHhRnp6eGTZummbSjx49mmEHBAAAAAAAqUv3VODo0aN19erVFO3Xrl3T6NGjM6QoAAAAAACeRukO6aNGjdLly5dTtF+9elWjRo3KkKIAAAAAAHgapTukG4Yhi8WSon3Pnj3y8fHJkKIAAAAAAHgapemZdEnKmTOnLBaLLBaLgoODbYJ6UlKSLl++rB49emRKkQAAAAAAPA3SHNKnTJkiwzAUERGhUaNGycvLy7rNyclJgYGBqlq1aqYUCXMLDAxU//791b9//zT1P3bsmAoXLqzdu3erbNmyqfaJiopS//79lZCQkGF1AgAAAIDZpTmkd+rUSdKdn2OrVq1ait9HN6Pw8HAlJCRoxYoV1ravvvpKr7zyikaPHq3Bgwfb9L8bHvPkyaP4+HjlyJHDuq1s2bJq3ry53n333cdU/aNJ7Zzv12/u3LkaO3ashg4dam1fsWKFXnrpJaXhl/msduzYIXd390ctGQAAAADwf9L0THpiYqL1z+XKldO1a9eUmJiY6svMZs2apQ4dOmjatGkpAvo/Xbp0SRMnTnyMld1x8+bNx3o8FxcXffDBB7pw4cK/GidPnjxyc3PLoKoy161bt7K6BAAAAAC4rzSF9Jw5c+rs2bOSJG9vb+XMmTPF6267WY0fP169e/fW/Pnz1aVLlwf27dOnjyZPnmw959TcvHlTgwcPVsGCBeXu7q4qVaooJibGuv38+fNq166dChUqJDc3N4WGhmrBggU2Y9SqVUu9e/fWwIEDlTt3btWrV0+StH//fjVs2FAeHh7Kly+fOnbsqL/++su631dffaXQ0FC5uroqV65cqlu3rq5cuaJ3331Xc+fO1ddff21dP+CfNd2rbt268vX11dixYx/4eWzZskXPP/+8XF1d5efnp759++rKlSvW7YGBgZoyZYr1/a+//qoaNWrIxcVFJUqU0Pfffy+LxZJidv/IkSOqXbu23NzcVKZMGf30008pjr1ixQoFBwfLxcVF9erV0++//26zffr06SpatKicnJxUrFgxffHFFzbbLRaLZsyYoWbNmsnd3V3vvfeeLly4oA4dOihPnjxydXXVM888o8jIyAd+BgAAAADwOKQppP/www/Wlds3bNigH374IcXrbrsZDR06VP/5z3+0atUqtWzZ8qH927Vrp6CgoAf+7vtrr72mzZs3a+HChfr555/VqlUrNWjQQIcPH5YkXb9+XRUqVNCqVau0b98+devWTR07dtS2bdtsxpk7d64cHBy0efNmffbZZzp9+rRq1qypsmXLaufOnVqzZo3+/PNPtW7dWpJ0+vRptWvXThERETpw4IBiYmLUokULGYahN954Q61bt1aDBg10+vRpnT59WtWqVbvvOdjb2+v999/Xxx9/rJMnT6baZ+/evapfv75atGihn3/+WYsWLdKmTZvUu3fvVPsnJyerefPmcnNz07Zt2/T555/r7bffTrXv22+/rTfeeENxcXEKDg5Wu3btdPv2bev2q1evasyYMZo7d642b96sxMREtW3b1rp9+fLl6tevnwYNGqR9+/ape/fueu2117Rhwwab44wcOVLNmjXT3r17FRERoeHDh2v//v1avXq1Dhw4oOnTpyt37typ1njjxo1sdbcIAAAAgOwtTc+k16xZU5J0+/ZtxcTEKCIiQn5+fplaWEZZvXq1vv76a0VHR6tOnTpp2sdisWjcuHFq0qSJBgwYoKJFi9psj4+P14IFC3Ty5EkVKFBAkvTGG29ozZo1ioyM1Pvvv6+CBQvqjTfesO7Tp08frVmzRkuWLFGVKlWs7UFBQRo/frz1/YgRI1S+fHm9//771rY5c+bIz89Phw4d0uXLl3X79m21aNFCAQEBkqTQ0FBrX1dXV924cUO+vr5pOteXXnpJZcuW1ciRIzV79uwU2ydMmKD27dtbF4V75plnNHXqVNWsWVPTp0+Xi4uLTf9169YpPj5eMTEx1hrGjBljvUvgn9544w01atRIkjRq1CiVLFlSv/32m0JCQiTduTV92rRp1s9r7ty5Kl68uLZv367KlStr4sSJCg8PV69evSRJAwcO1NatWzVx4kTVrl3bepz27dsrIiLC+v7EiRMqV66cKlasKOnOnQD3M3bsWI0aNeqBnyEAAAAAZJR0/U66g4ODJk6cqKSkpMyqJ8OVLl1agYGBGjFihC5dumRtf/HFF+Xh4SEPDw+VLFkyxX7169dXjRo1NHz48BTb/ve//8kwDAUHB1vH8PDwUGxsrOLj4yXd+Vm6MWPGqHTp0sqVK5c8PDy0bt06nThxwmasu0Hxrl27dmnDhg02494NrfHx8SpTpozCwsIUGhqqVq1aaebMmf/6mfIPPvhAc+fO1f79+1Ns27Vrl6KiomzqqV+/vpKTk3X06NEU/Q8ePCg/Pz+bLwkqV66c6nFLly5t/XP+/PklyeYRAwcHB5vPJyQkRN7e3jpw4IAk6cCBA6pevbrNmNWrV7duv+vez7hnz55auHChypYtq8GDB2vLli2p1idJw4YN08WLF62ve2+3BwAAAICMlObV3e8KCwtTTEyMwsPDM6GcjFewYEEtXbpUtWvXVoMGDbRmzRrlyJFDs2bN0rVr1yTpvivVjxs3TlWrVtWbb75p056cnCx7e3vt2rVL9vb2Nts8PDwkSZMmTdKHH36oKVOmKDQ0VO7u7urfv3+KxeHuXRU9OTlZTZo00QcffJCinvz588ve3l7r16/Xli1btG7dOn388cd6++23tW3bNhUuXDh9H87/ef7551W/fn299dZbKf5ek5OT1b17d/Xt2zfFfv7+/inaDMOQxWJJ03H/+bnf3Sc5OdmmT2pj/bPt3u2pHf/ez/jFF1/U8ePH9e233+r7779XWFiYXn/99VQXC3R2dpazs3OazgcAAAAA/q10h/QXX3xRw4YN0759+1ShQoUUAahp06YZVlxG8ff3V2xsrGrXrq0XXnhBa9euVcGCBR+6X+XKldWiRQubnyiT7qxwn5SUpLNnz+q5555Ldd8ff/xRzZo10yuvvCLpTvg8fPiwihcv/sBjli9fXkuXLlVgYKAcHFL/67FYLKpevbqqV6+uESNGKCAgQMuXL9fAgQPl5OT0SHc6jBs3TmXLllVwcHCKen755RcFBQWlaZyQkBCdOHFCf/75p/Llyyfpzk+0PYrbt29r586d1pn4gwcPKiEhwXpnQfHixbVp0ya9+uqr1n22bNny0M9YurMifXh4uMLDw/Xcc8/pzTffzJIV/QEAAADgn9Id0nv27ClJmjx5coptFovFtLfCFypUSDExMTZB3cvL66H7jRkzRiVLlrQJzMHBwerQoYNeffVVTZo0SeXKldNff/2lH374QaGhoWrYsKGCgoK0dOlSbdmyRTlz5tTkyZN15syZhwbI119/XTNnzlS7du305ptvKnfu3Prtt9+0cOFCzZw5Uzt37lR0dLReeOEF5c2bV9u2bdO5c+es4wYGBmrt2rU6ePCgcuXKJS8vrzT9pn1oaKg6dOigjz/+2KZ9yJAhevbZZ/X666+ra9eucnd314EDB7R+/foUfSWpXr16Klq0qDp16qTx48fr0qVL1oXj0jrDfpejo6P69OmjqVOnytHRUb1799azzz5rDe1vvvmmWrdurfLlyyssLEzffPONli1bpu+///6B444YMUIVKlRQyZIldePGDa1atSpNwR4AAAAAMlu6nkmX7swI3+9l1oB+V8GCBRUbG6uEhATVq1dPCQkJD90nODhYERERun79uk17ZGSkXn31VQ0aNEjFihVT06ZNtW3bNuuCesOHD1f58uVVv3591apVS76+vmrevPlDj1egQAFt3rxZSUlJql+/vkqVKqV+/frJy8tLdnZ28vT01MaNG9WwYUMFBwfrnXfe0aRJk/Tiiy9Kkrp27apixYqpYsWKypMnjzZv3pzmz+c///mPDMOwaStdurRiY2N1+PBhPffccypXrpyGDx9ufYb8Xvb29lqxYoUuX76sSpUqqUuXLnrnnXckKcUicw/j5uamIUOGqH379qpatapcXV21cOFC6/bmzZvro48+0oQJE1SyZEl99tlnioyMVK1atR44rpOTk4YNG6bSpUvr+eefl729vc24AAAAAJBVLMa9qQzIYJs3b1aNGjX022+/pVgpP7tJTEyUl5eXptUNkKtDur/jAgAAAJAFIlYfyfAx72aDixcvytPTM8PGfaSUERsbqyZNmigoKEjPPPOMmjZtqh9//DHDikL2tnz5cq1fv17Hjh3T999/r27duql69erZPqADAAAAQGZLd0j/8ssvVbduXbm5ualv377q3bu3XF1dFRYWpvnz52dGjchmLl26pF69eikkJETh4eGqVKmSvv7666wuCwAAAABML923uxcvXlzdunXTgAEDbNonT56smTNnpviNauBJwu3uAAAAQPbzRN/ufuTIETVp0iRFe9OmTXX06NEMKQoAAAAAgKdRukO6n5+foqOjU7RHR0dbVzYHAAAAAADpl+7fSR80aJD69u2ruLg4VatWTRaLRZs2bVJUVJQ++uijzKgRAAAAAICnQrpDes+ePeXr66tJkyZp8eLFku48p75o0SI1a9YswwsEAAAAAOBpke6QLkkvvfSSXnrppYyuBQAAAACApxrLUwMAAAAAYBLpnknPmTOnLBZLinaLxSIXFxcFBQUpPDxcr732WoYUCAAAAADA0yLdIX3EiBEaM2aMXnzxRVWuXFmGYWjHjh1as2aNXn/9dR09elQ9e/bU7du31bVr18yoGQAAAACAJ1K6Q/qmTZv03nvvqUePHjbtn332mdatW6elS5eqdOnSmjp1KiEdAAAAAIB0SPcz6WvXrlXdunVTtIeFhWnt2rWSpIYNG+rIkSP/vjoAAAAAAJ4i6Q7pPj4++uabb1K0f/PNN/Lx8ZEkXblyRTly5Pj31QEAAAAA8BRJ9+3uw4cPV8+ePbVhwwZVrlxZFotF27dv13fffacZM2ZIktavX6+aNWtmeLEAAAAAADzJ0h3Su3btqhIlSmjatGlatmyZDMNQSEiIYmNjVa1aNUnSoEGDMrxQAAAAAACedOkO6ZJUvXp1Va9ePaNrAQAAAADgqZamkJ6YmJjmAT09PR+5GAAAAAAAnmZpCune3t6yWCwP7GMYhiwWi5KSkjKkMAAAAAAAnjZpCukbNmxI02C7d+/+V8UAAAAAAPA0S1NIf9BK7RcvXtS8efM0a9Ys7dmzR/3798+o2gAAAAAAeKqk+3fS7/rhhx/0yiuvKH/+/Pr444/VsGFD7dy5MyNrAwAAAADgqZKu1d1PnjypqKgozZkzR1euXFHr1q1169YtLV26VCVKlMisGgEAAAAAeCqkeSa9YcOGKlGihPbv36+PP/5Yp06d0scff5yZtQEAAAAA8FRJ80z6unXr1LdvX/Xs2VPPPPNMZtYEAAAAAMBTKc0z6T/++KMuXbqkihUrqkqVKpo2bZrOnTuXmbUBAAAAAPBUSXNIr1q1qmbOnKnTp0+re/fuWrhwoQoWLKjk5GStX79ely5dysw6AQAAAAB44qV7dXc3NzdFRERo06ZN2rt3rwYNGqRx48Ypb968atq0aWbUCAAAAADAU+GRf4JNkooVK6bx48fr5MmTWrBgQUbVBAAAAADAU+lfhfS77O3t1bx5c61cuTIjhgMAAAAA4KmUISEdAAAAAAD8e4R0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmIRDVhcAZEcdl/4sT0/PrC4DAAAAwBOGmXQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGASDlldAJAdlexbTnZO9lldBgAAAIDH5Pjnhx7LcZhJBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0p8ygYGBmjJlSlaXAQAAAABIBSH9MQsPD5fFYpHFYpGDg4P8/f3Vs2dPXbhwIatLy1Tvvvuu9bz/+fr++++ztKayZctm2fEBAAAA4F4OWV3A06hBgwaKjIzU7du3tX//fkVERCghIUELFizI6tIyVcmSJVOEch8fn0ca6+bNm3JycsqIsgAAAADANJhJzwLOzs7y9fVVoUKF9MILL6hNmzZat26ddXtSUpI6d+6swoULy9XVVcWKFdNHH31kM0Z4eLiaN2+uiRMnKn/+/MqVK5def/113bp1y9rn7NmzatKkiVxdXVW4cGHNmzcvRS0nTpxQs2bN5OHhIU9PT7Vu3Vp//vmndfvd2eY5c+bI399fHh4e6tmzp5KSkjR+/Hj5+voqb968GjNmzEPP28HBQb6+vjavu0F77969qlOnjlxdXZUrVy5169ZNly9fTnG+Y8eOVYECBRQcHCxJ+uOPP9SmTRvlzJlTuXLlUrNmzXTs2DHrfjExMapcubLc3d3l7e2t6tWr6/jx44qKitKoUaO0Z88e66x+VFTUQ88BAAAAADITM+lZ7MiRI1qzZo0cHR2tbcnJySpUqJAWL16s3Llza8uWLerWrZvy58+v1q1bW/tt2LBB+fPn14YNG/Tbb7+pTZs2Klu2rLp27SrpTrD9/fff9cMPP8jJyUl9+/bV2bNnrfsbhqHmzZvL3d1dsbGxun37tnr16qU2bdooJibG2i8+Pl6rV6/WmjVrFB8fr5dffllHjx5VcHCwYmNjtWXLFkVERCgsLEzPPvtsuj+Dq1evqkGDBnr22We1Y8cOnT17Vl26dFHv3r1tgnN0dLQ8PT21fv16GYahq1evqnbt2nruuee0ceNGOTg46L333lODBg30888/y87OTs2bN1fXrl21YMEC3bx5U9u3b5fFYlGbNm20b98+rVmzxjq77+XllaK2Gzdu6MaNG9b3iYmJ6T4/AAAAAEgrQnoWWLVqlTw8PJSUlKTr169LkiZPnmzd7ujoqFGjRlnfFy5cWFu2bNHixYttQnrOnDk1bdo02dvbKyQkRI0aNVJ0dLS6du2qQ4cOafXq1dq6dauqVKkiSZo9e7aKFy9u3f/777/Xzz//rKNHj8rPz0+S9MUXX6hkyZLasWOHKlWqJOnOlwZz5sxRjhw5VKJECdWuXVsHDx7Ud999Jzs7OxUrVkwffPCBYmJiHhjS9+7dKw8PD+v7EiVKaPv27Zo3b56uXbum//73v3J3d5ckTZs2TU2aNNEHH3ygfPnySZLc3d01a9Ys6+z7nDlzZGdnp1mzZslisUiSIiMj5e3trZiYGFWsWFEXL15U48aNVbRoUUmyOX8PDw/r7P79jB071ubvAgAAAAAyEyE9C9SuXVvTp0/X1atXNWvWLB06dEh9+vSx6TNjxgzNmjVLx48f17Vr13Tz5s0Ui5yVLFlS9vb21vf58+fX3r17JUkHDhyQg4ODKlasaN0eEhIib29v6/sDBw7Iz8/PGtClO8HZ29tbBw4csIb0wMBA5ciRw9onX758sre3l52dnU3bP2fpU1OsWDGtXLnS+t7Z2dlaR5kyZawBXZKqV6+u5ORkHTx40BrSQ0NDbZ5D37Vrl3777Teb2iTp+vXrio+P1wsvvKDw8HDVr19f9erVU926ddW6dWvlz5//gXX+07BhwzRw4EDr+8TERJvPCwAAAAAyEs+kZwF3d3cFBQWpdOnSmjp1qm7cuGEzW7t48WINGDBAERERWrduneLi4vTaa6/p5s2bNuP88xZ5SbJYLEpOTpZ051b2u233YxhGqtvvbU/tOA869v04OTkpKCjI+robdu9Xx731/zPES3dm+CtUqKC4uDib16FDh9S+fXtJd2bWf/rpJ1WrVk2LFi1ScHCwtm7d+sA6/8nZ2Vmenp42LwAAAADILIR0Exg5cqQmTpyoU6dOSZJ+/PFHVatWTb169VK5cuUUFBSk+Pj4dI1ZvHhx3b59Wzt37rS2HTx4UAkJCdb3JUqU0IkTJ/T7779b2/bv36+LFy/a3Bae2UqUKKG4uDhduXLF2rZ582bZ2dlZF4hLTfny5XX48GHlzZvXJvwHBQXZPF9erlw5DRs2TFu2bFGpUqU0f/58SXe+NEhKSsq8EwMAAACAdCKkm0CtWrVUsmRJvf/++5KkoKAg7dy5U2vXrtWhQ4c0fPhw7dixI11jFitWTA0aNFDXrl21bds27dq1S126dJGrq6u1T926dVW6dGl16NBB//vf/7R9+3a9+uqrqlmzps1t8pmtQ4cOcnFxUadOnbRv3z5t2LBBffr0UceOHa23ut9vv9y5c6tZs2b68ccfdfToUcXGxqpfv346efKkjh49qmHDhumnn37S8ePHtW7dOh06dMj6BURgYKCOHj2quLg4/fXXXzYLxAEAAABAViCkm8TAgQM1c+ZM/f777+rRo4datGihNm3aqEqVKjp//rx69eqV7jEjIyPl5+enmjVrqkWLFurWrZvy5s1r3W6xWLRixQrlzJlTzz//vOrWrasiRYpo0aJFGXlqD+Xm5qa1a9fq77//VqVKlfTyyy8rLCxM06ZNe+h+GzdulL+/v1q0aKHixYsrIiJC165dk6enp9zc3PTrr7+qZcuWCg4OVrdu3dS7d291795dktSyZUs1aNBAtWvXVp48eZ7436kHAAAAYH4W4+7DywAeKjExUV5eXirUqYjsnOwfvgMAAACAJ8Lxzw/ZvL+bDS5evJiha1cxkw4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJByyugAgO/pl6m55enpmdRkAAAAAnjDMpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASThkdQFAdmIYhiQpMTExiysBAAAAkJXuZoK7GSGjENKBdDh//rwkyc/PL4srAQAAAGAG58+fl5eXV4aNR0gH0sHHx0eSdOLEiQz9DxG4V2Jiovz8/PT777/L09Mzq8vBE4xrDY8L1xoeF641PC4XL16Uv7+/NSNkFEI6kA52dneWcfDy8uIffTwWnp6eXGt4LLjW8LhwreFx4VrD43I3I2TYeBk6GgAAAAAAeGSEdAAAAAAATIKQDqSDs7OzRo4cKWdn56wuBU84rjU8LlxreFy41vC4cK3hccmsa81iZPR68QAAAAAA4JEwkw4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpwD0+/fRTFS5cWC4uLqpQoYJ+/PHHB/aPjY1VhQoV5OLioiJFimjGjBmPqVJkd+m51pYtW6Z69eopT5488vT0VNWqVbV27drHWC2ys/T+u3bX5s2b5eDgoLJly2ZugXhipPdau3Hjht5++20FBATI2dlZRYsW1Zw5cx5TtcjO0nutzZs3T2XKlJGbm5vy58+v1157TefPn39M1SK72rhxo5o0aaICBQrIYrFoxYoVD90nI7IBIR34h0WLFql///56++23tXv3bj333HN68cUXdeLEiVT7Hz16VA0bNtRzzz2n3bt366233lLfvn21dOnSx1w5spv0XmsbN25UvXr19N1332nXrl2qXbu2mjRpot27dz/mypHdpPdau+vixYt69dVXFRYW9pgqRXb3KNda69atFR0drdmzZ+vgwYNasGCBQkJCHmPVyI7Se61t2rRJr776qjp37qxffvlFS5Ys0Y4dO9SlS5fHXDmymytXrqhMmTKaNm1amvpnWDYwAFhVrlzZ6NGjh01bSEiIMXTo0FT7Dx482AgJCbFp6969u/Hss89mWo14MqT3WktNiRIljFGjRmV0aXjCPOq11qZNG+Odd94xRo4caZQpUyYTK8STIr3X2urVqw0vLy/j/Pnzj6M8PEHSe61NmDDBKFKkiE3b1KlTjUKFCmVajXjySDKWL1/+wD4ZlQ2YSQf+z82bN7Vr1y698MILNu0vvPCCtmzZkuo+P/30U4r+9evX186dO3Xr1q1MqxXZ26Nca/dKTk7WpUuX5OPjkxkl4gnxqNdaZGSk4uPjNXLkyMwuEU+IR7nWVq5cqYoVK2r8+PEqWLCggoOD9cYbb+jatWuPo2RkU49yrVWrVk0nT57Ud999J8Mw9Oeff+qrr75So0aNHkfJeIpkVDZwyOjCgOzqr7/+UlJSkvLly2fTni9fPp05cybVfc6cOZNq/9u3b+uvv/5S/vz5M61eZF+Pcq3da9KkSbpy5Ypat26dGSXiCfEo19rhw4c1dOhQ/fjjj3Jw4H8TkDaPcq0dOXJEmzZtkouLi5YvX66//vpLvXr10t9//81z6bivR7nWqlWrpnnz5qlNmza6fv26bt++raZNm+rjjz9+HCXjKZJR2YCZdOAeFovF5r1hGCnaHtY/tXbgXum91u5asGCB3n33XS1atEh58+bNrPLwBEnrtZaUlKT27dtr1KhRCg4Oflzl4QmSnn/XkpOTZbFYNG/ePFWuXFkNGzbU5MmTFRUVxWw6Hio919r+/fvVt29fjRgxQrt27dKaNWt09OhR9ejR43GUiqdMRmQDviIH/k/u3Lllb2+f4lvYs2fPpvhG7C5fX99U+zs4OChXrlyZViuyt0e51u5atGiROnfurCVLlqhu3bqZWSaeAOm91i5duqSdO3dq9+7d6t27t6Q7QcowDDk4OGjdunWqU6fOY6kd2cuj/LuWP39+FSxYUF5eXta24sWLyzAMnTx5Us8880ym1ozs6VGutbFjx6p69ep68803JUmlS5eWu7u7nnvuOb333nvc+YgMk1HZgJl04P84OTmpQoUKWr9+vU37+vXrVa1atVT3qVq1aor+69atU8WKFeXo6JhptSJ7e5RrTbozgx4eHq758+fzHB3SJL3Xmqenp/bu3au4uDjrq0ePHipWrJji4uJUpUqVx1U6splH+XetevXqOnXqlC5fvmxtO3TokOzs7FSoUKFMrRfZ16Nca1evXpWdnW3ssbe3l/T/ZzmBjJBh2SBdy8wBT7iFCxcajo6OxuzZs439+/cb/fv3N9zd3Y1jx44ZhmEYQ4cONTp27Gjtf+TIEcPNzc0YMGCAsX//fmP27NmGo6Oj8dVXX2XVKSCbSO+1Nn/+fMPBwcH45JNPjNOnT1tfCQkJWXUKyCbSe63di9XdkVbpvdYuXbpkFCpUyHj55ZeNX375xYiNjTWeeeYZo0uXLll1Csgm0nutRUZGGg4ODsann35qxMfHG5s2bTIqVqxoVK5cOatOAdnEpUuXjN27dxu7d+82JBmTJ082du/ebRw/ftwwjMzLBoR04B6ffPKJERAQYDg5ORnly5c3YmNjrds6depk1KxZ06Z/TEyMUa5cOcPJyckIDAw0pk+f/pgrRnaVnmutZs2ahqQUr06dOj3+wpHtpPfftX8ipCM90nutHThwwKhbt67h6upqFCpUyBg4cKBx9erVx1w1sqP0XmtTp041SpQoYbi6uhr58+c3OnToYJw8efIxV43sZsOGDQ/8/6/MygYWw+AeDwAAAAAAzIBn0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAyPa2bNkie3t7NWjQIKtLAQDgX7EYhmFkdREAAAD/RpcuXeTh4aFZs2Zp//798vf3z5I6bt26JUdHxyw5NgDgycBMOgAAyNauXLmixYsXq2fPnmrcuLGioqJstq9cuVIVK1aUi4uLcufOrRYtWli33bhxQ4MHD5afn5+cnZ31zDPPaPbs2ZKkqKgoeXt724y1YsUKWSwW6/t3331XZcuW1Zw5c1SkSBE5OzvLMAytWbNGNWrUkLe3t3LlyqXGjRsrPj7eZqyTJ0+qbdu28vHxkbu7uypWrKht27bp2LFjsrOz086dO236f/zxxwoICBDzKwDwZCOkAwCAbG3RokUqVqyYihUrpldeeUWRkZHWIPvtt9+qRYsWatSokXbv3q3o6GhVrFjRuu+rr76qhQsXaurUqTpw4IBmzJghDw+PdB3/t99+0+LFi7V06VLFxcVJuvPFwcCBA7Vjxw5FR0fLzs5OL730kpKTkyVJly9fVs2aNXXq1CmtXLlSe/bs0eDBg5WcnKzAwEDVrVtXkZGRNseJjIxUeHi4zZcEAIAnj0NWFwAAAPBvzJ49W6+88ookqUGDBrp8+bKio6NVt25djRkzRm3bttWoUaOs/cuUKSNJOnTokBYvXqz169erbt26kqQiRYqk+/g3b97UF198oTx58ljbWrZsmaLGvHnzav/+/SpVqpTmz5+vc+fOaceOHfLx8ZEkBQUFWft36dJFPXr00OTJk+Xs7Kw9e/YoLi5Oy5YtS3d9AIDshZl0AACQbR08eFDbt29X27ZtJUkODg5q06aN5syZI0mKi4tTWFhYqvvGxcXJ3t5eNWvW/Fc1BAQE2AR0SYqPj1f79u1VpEgReXp6qnDhwpKkEydOWI9drlw5a0C/V/PmzeXg4KDly5dLkubMmaPatWsrMDDwX9UKADA/ZtIBAEC2NXv2bN2+fVsFCxa0thmGIUdHR124cEGurq733fdB2yTJzs4uxfPft27dStHP3d09RVuTJk3k5+enmTNnqkCBAkpOTlapUqV08+bNNB3byclJHTt2VGRkpFq0aKH58+drypQpD9wHAPBkYCYdAABkS7dv39Z///tfTZo0SXFxcdbXnj17FBAQoHnz5ql06dKKjo5Odf/Q0FAlJycrNjY21e158uTRpUuXdOXKFWvb3WfOH+T8+fM6cOCA3nnnHYWFhal48eK6cOGCTZ/SpUsrLi5Of//9933H6dKli77//nt9+umnunXrls2CdwCAJxcz6QAAIFtatWqVLly4oM6dO8vLy8tm28svv6zZs2frww8/VFhYmIoWLaq2bdvq9u3bWr16tQYPHqzAwEB16tRJERERmjp1qsqUKaPjx4/r7Nmzat26tapUqSI3Nze99dZb6tOnj7Zv355i5fjU5MyZU7ly5dLnn3+u/Pnz68SJExo6dKhNn3bt2un9999X8+bNNXbsWOXPn1+7d+9WgQIFVLVqVUlS8eLF9eyzz2rIkCGKiIh46Ow7AODJwEw6AADIlmbPnq26deumCOjSnYXb4uLi5OnpqSVLlmjlypUqW7as6tSpo23btln7TZ8+XS+//LJ69eqlkJAQde3a1Tpz7uPjoy+//FLfffedQkNDtWDBAr377rsPrcvOzk4LFy7Url27VKpUKQ0YMEATJkyw6ePk5KR169Ypb968atiwoUJDQzVu3DjZ29vb9OvcubNu3rypiIiIR/iEAADZkcXgxzYBAABMacyYMVq4cKH27t2b1aUAAB4TZtIBAABM5vLly9qxY4c+/vhj9e3bN6vLAQA8RoR0AAAAk+ndu7dq1KihmjVrcqs7ADxluN0dAAAAAACTYCYdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYxP8DkACKSHdH9d8AAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from sklearn.svm import SVC\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.metrics import accuracy_score, confusion_matrix\n",
"\n",
"# create instances of only the selected models\n",
"models = {\n",
" 'Support Vector Machine': SVC(),\n",
" 'K-Nearest Neighbors': KNeighborsClassifier(),\n",
" 'Random Forest': RandomForestClassifier(),\n",
"}\n",
"\n",
"# to store model names and accuracies for plotting\n",
"model_names = []\n",
"accuracies = []\n",
"\n",
"# iterate through the selected models\n",
"for name, model in models.items():\n",
" model.fit(X_train, y_train)\n",
" y_pred = model.predict(X_test)\n",
" \n",
" accuracy = accuracy_score(y_test, y_pred)\n",
" model_names.append(name)\n",
" accuracies.append(accuracy)\n",
" \n",
" print(f\"{name} with accuracy: {accuracy}\")\n",
" \n",
"\n",
"# set up the DataFrame for Seaborn\n",
"import pandas as pd\n",
"results_df = pd.DataFrame({'Algorithm': model_names, 'Accuracy': accuracies})\n",
"\n",
"# plot the accuracies using Seaborn\n",
"plt.figure(figsize=(10, 5), dpi=100)\n",
"sns.barplot(x='Accuracy', y='Algorithm', data=results_df, palette='dark')\n",
"plt.title('Accuracy Comparison')\n",
"plt.xlabel('Accuracy')\n",
"plt.ylabel('Algorithm')\n",
"plt.xlim(0, 1) # assuming accuracy is between 0 and 1\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "4659be4d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.9931818181818182"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rfc = RandomForestClassifier()\n",
"rfc.fit(X_train,y_train)\n",
"ypred = rfc.predict(X_test)\n",
"accuracy_score(y_test,ypred)"
]
},
{
"cell_type": "markdown",
"id": "859d9922",
"metadata": {},
"source": [
"# Predictive System"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "17f3a3fe",
"metadata": {},
"outputs": [],
"source": [
"def recommendation(N, P, K, temperature, humidity, ph, rainfall):\n",
" features = np.array([[N, P, K, temperature, humidity, ph, rainfall]])\n",
" transformed_features = ms.transform(features) # Use transform only\n",
" prediction = rfc.predict(transformed_features)\n",
" return prediction[0]"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "64ffd9d3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Kidneybeans is a best crop to be cultivated \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"E:\\anaconda\\Lib\\site-packages\\sklearn\\base.py:493: UserWarning: X does not have valid feature names, but MinMaxScaler was fitted with feature names\n",
" warnings.warn(\n"
]
}
],
"source": [
"# new inputs\n",
"\n",
"\n",
"N = 40\n",
"P = 50\n",
"k = 50\n",
"temperature = 40.0\n",
"humidity = 20\n",
"ph = 100\n",
"rainfall = 100\n",
"\n",
"predict = recommendation(N,P,k,temperature,humidity,ph,rainfall)\n",
"\n",
"crop_dict = {1: \"Rice\", 2: \"Maize\", 3: \"Jute\", 4: \"Cotton\", 5: \"Coconut\", 6: \"Papaya\", 7: \"Orange\",\n",
" 8: \"Apple\", 9: \"Muskmelon\", 10: \"Watermelon\", 11: \"Grapes\", 12: \"Mango\", 13: \"Banana\",\n",
" 14: \"Pomegranate\", 15: \"Lentil\", 16: \"Blackgram\", 17: \"Mungbean\", 18: \"Mothbeans\",\n",
" 19: \"Pigeonpeas\", 20: \"Kidneybeans\", 21: \"Chickpea\", 22: \"Coffee\"}\n",
"\n",
"if predict in crop_dict:\n",
" crop = crop_dict[predict]\n",
" print(\"{} is a best crop to be cultivated \".format(crop))\n",
"else:\n",
" print(\"Sorry are not able to recommend a proper crop for this environment\")"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "2ea8ffda",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Banana is a best crop to be cultivated \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"E:\\anaconda\\Lib\\site-packages\\sklearn\\base.py:493: UserWarning: X does not have valid feature names, but MinMaxScaler was fitted with feature names\n",
" warnings.warn(\n"
]
}
],
"source": [
"# new inputs 2\n",
"\n",
"\n",
"N = 100\n",
"P = 90\n",
"k = 100\n",
"temperature = 50.0\n",
"humidity = 90.0\n",
"ph = 100\n",
"rainfall = 202.0\n",
"\n",
"predict = recommendation(N,P,k,temperature,humidity,ph,rainfall)\n",
"\n",
"crop_dict = {1: \"Rice\", 2: \"Maize\", 3: \"Jute\", 4: \"Cotton\", 5: \"Coconut\", 6: \"Papaya\", 7: \"Orange\",\n",
" 8: \"Apple\", 9: \"Muskmelon\", 10: \"Watermelon\", 11: \"Grapes\", 12: \"Mango\", 13: \"Banana\",\n",
" 14: \"Pomegranate\", 15: \"Lentil\", 16: \"Blackgram\", 17: \"Mungbean\", 18: \"Mothbeans\",\n",
" 19: \"Pigeonpeas\", 20: \"Kidneybeans\", 21: \"Chickpea\", 22: \"Coffee\"}\n",
"\n",
"if predict in crop_dict:\n",
" crop = crop_dict[predict]\n",
" print(\"{} is a best crop to be cultivated \".format(crop))\n",
"else:\n",
" print(\"Sorry are not able to recommend a proper crop for this environment\")"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "d0dccd4e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Orange is a best crop to be cultivated \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"E:\\anaconda\\Lib\\site-packages\\sklearn\\base.py:493: UserWarning: X does not have valid feature names, but MinMaxScaler was fitted with feature names\n",
" warnings.warn(\n"
]
}
],
"source": [
"# new inputs 2\n",
"N = 10\n",
"P = 10\n",
"k = 10\n",
"temperature = 15.0\n",
"humidity = 80.0\n",
"ph = 4.5\n",
"rainfall = 10.0\n",
"\n",
"predict = recommendation(N,P,k,temperature,humidity,ph,rainfall)\n",
"\n",
"crop_dict = {1: \"Rice\", 2: \"Maize\", 3: \"Jute\", 4: \"Cotton\", 5: \"Coconut\", 6: \"Papaya\", 7: \"Orange\",\n",
" 8: \"Apple\", 9: \"Muskmelon\", 10: \"Watermelon\", 11: \"Grapes\", 12: \"Mango\", 13: \"Banana\",\n",
" 14: \"Pomegranate\", 15: \"Lentil\", 16: \"Blackgram\", 17: \"Mungbean\", 18: \"Mothbeans\",\n",
" 19: \"Pigeonpeas\", 20: \"Kidneybeans\", 21: \"Chickpea\", 22: \"Coffee\"}\n",
"\n",
"if predict in crop_dict:\n",
" crop = crop_dict[predict]\n",
" print(\"{} is a best crop to be cultivated \".format(crop))\n",
"else:\n",
" print(\"Sorry are not able to recommend a proper crop for this environment\")"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "6761fdaf-6bd8-464e-b61a-2cff2f98e08d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Papaya is the best crop to be cultivated.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"E:\\anaconda\\Lib\\site-packages\\sklearn\\base.py:493: UserWarning: X does not have valid feature names, but MinMaxScaler was fitted with feature names\n",
" warnings.warn(\n"
]
}
],
"source": [
"N = 40 # Nitrogen\n",
"P = 45 # Phosphorus\n",
"K = 40 # Potassium\n",
"temperature = 20.0 # Celsius\n",
"humidity = 80.0 # Percentage\n",
"ph = 6.0 # pH\n",
"rainfall = 150.0 # mm\n",
"\n",
"predict = recommendation(N, P, K, temperature, humidity, ph, rainfall)\n",
"\n",
"if predict in crop_dict:\n",
" crop = crop_dict[predict]\n",
" print(\"{} is the best crop to be cultivated.\".format(crop))\n",
"else:\n",
" print(\"Sorry, we are not able to recommend a proper crop for this environment.\")"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "fa3d3b8c",
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"pickle.dump(rfc,open('model.pkl','wb'))\n",
"pickle.dump(ms,open('minmaxscaler.pkl','wb'))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a55a48a3",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "c97733fc",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}