File size: 2,447 Bytes
f2b264f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38812af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2b264f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import datasets
from langchain.docstore.document import Document

# Load the dataset
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")

# Convert dataset entries into Document objects
docs = [
    Document(
        page_content="\n".join([
            f"Name: {guest['name']}",
            f"Relation: {guest['relation']}",
            f"Description: {guest['description']}",
            f"Email: {guest['email']}"
        ]),
        metadata={"name": guest["name"]}
    )
    for guest in guest_dataset
]


'''
from smolagents import DuckDuckGoSearchTool
from smolagents import Tool
import random
from huggingface_hub import list_models


# Initialize the DuckDuckGo search tool
#search_tool = DuckDuckGoSearchTool()


class WeatherInfoTool(Tool):
    name = "weather_info"
    description = "Fetches dummy weather information for a given location."
    inputs = {
        "location": {
            "type": "string",
            "description": "The location to get weather information for."
        }
    }
    output_type = "string"

    def forward(self, location: str):
        # Dummy weather data
        weather_conditions = [
            {"condition": "Rainy", "temp_c": 15},
            {"condition": "Clear", "temp_c": 25},
            {"condition": "Windy", "temp_c": 20}
        ]
        # Randomly select a weather condition
        data = random.choice(weather_conditions)
        return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C"

class HubStatsTool(Tool):
    name = "hub_stats"
    description = "Fetches the most downloaded model from a specific author on the Hugging Face Hub."
    inputs = {
        "author": {
            "type": "string",
            "description": "The username of the model author/organization to find models from."
        }
    }
    output_type = "string"

    def forward(self, author: str):
        try:
            # List models from the specified author, sorted by downloads
            models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
            
            if models:
                model = models[0]
                return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
            else:
                return f"No models found for author {author}."
        except Exception as e:
            return f"Error fetching models for {author}: {str(e)}"

'''