File size: 4,214 Bytes
fb2eca4
a5fb092
fb2eca4
0f6dd16
fb2eca4
 
 
 
10cb7da
fb2eca4
ba788e4
03b7efe
 
 
fb2eca4
 
 
 
 
 
 
 
0f6dd16
 
 
fb2eca4
 
ebe5014
fb2eca4
 
 
2005977
 
 
 
0abcb94
 
 
 
 
fb2eca4
 
 
 
 
 
 
 
 
 
 
2fbdede
d38295f
 
 
 
fb2eca4
 
 
10cb7da
 
 
 
 
 
 
 
 
ba788e4
10cb7da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2eca4
d6fcf5e
03b7efe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import io
import re
import time
import os
from typing import List, Literal
from fastapi import FastAPI
from pydantic import BaseModel
from enum import Enum
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import uvicorn
app = FastAPI(docs_url="/")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


class TranslationRequest(BaseModel):
    user_input: str
    source_lang: str
    target_lang: str


def load_model(pretrained_model: str = "facebook/m2m100_1.2B", cache_dir: str = "models/"):
    model_dir = os.path.join(os.getcwd(), cache_dir)
    tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=model_dir)
    model = M2M100ForConditionalGeneration.from_pretrained(pretrained_model, cache_dir=model_dir).to(device)
    model.eval()
    return tokenizer, model


@app.post("/translate")
async def translate(request: TranslationRequest):
    """
    language support
    Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba), Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian (ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English (en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr), Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu), Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it), Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn), Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian (lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto; Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd), Sinhala; Sinhalese (si), Slovak (sk), Slovenian (sl), Somali (so), Albanian (sq), Serbian (sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog (tl), Tswana (tn), Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu)
    """
    try:
        tokenizer, model = load_model()
    except Exception as E:
        return{"error": str(E)}
    
    src_lang = request.source_lang
    trg_lang = request.target_lang
    tokenizer.src_lang = src_lang
    with torch.no_grad():
        encoded_input = tokenizer(request.user_input, return_tensors="pt").to(device)
        generated_tokens = model.generate(
            **encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang)
        )
        translated_text = tokenizer.batch_decode(
            generated_tokens, skip_special_tokens=True
        )[0]
   
    try:
        response = {"translation": translated_text}
    except Exception as E:
        return {"error": str(E)}
    return response



# chat
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
 
chat_model_name = "csebuetnlp/mT5_multilingual_XLSum"
tokenizer = AutoTokenizer.from_pretrained(chat_model_name)
modelchat = AutoModelForSeq2SeqLM.from_pretrained(chat_model_name)

@app.get("/chat")
async def read_root(text: str):
    input_ids = tokenizer(
        [WHITESPACE_HANDLER(text)],
        return_tensors="pt",
        padding="max_length",
        truncation=True,
        max_length=512
    )["input_ids"]

        # max_length=84,
    output_ids = modelchat.generate(
        input_ids=input_ids,
        max_length=500,
        no_repeat_ngram_size=2,
        num_beams=4
    )[0]

    summary = tokenizer.decode(
        output_ids,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=True
    )

    return {"summary": summary}






if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)