File size: 1,560 Bytes
fb2eca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import io
import time
from typing import List, Literal
from fastapi import FastAPI
from pydantic import BaseModel
from enum import Enum
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
import torch

app = FastAPI()
device = torch.device("cpu")


class TranslationRequest(BaseModel):
    user_input: str
    source_lang: str
    target_lang: str


def load_model(pretrained_model: str = "facebook/m2m100_1.2B", cache_dir: str = "models/"):
    tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
    model = M2M100ForConditionalGeneration.from_pretrained(pretrained_model, cache_dir=cache_dir).to(device)
    model.eval()
    return tokenizer, model


@app.post("/translate")
async def translate(request: TranslationRequest):
    time_start = time.time()
    tokenizer, model = load_model()
    src_lang = request.source_lang
    trg_lang = request.target_lang
    tokenizer.src_lang = src_lang
    with torch.no_grad():
        encoded_input = tokenizer(request.user_input, return_tensors="pt").to(device)
        generated_tokens = model.generate(
            **encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang)
        )
        translated_text = tokenizer.batch_decode(
            generated_tokens, skip_special_tokens=True
        )[0]
    time_end = time.time()
    response = {"translation": translated_text, "computation_time": round((time_end - time_start), 3)}
    return response


if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=8000)