glennrory commited on
Commit
7e36dcd
·
verified ·
1 Parent(s): 91b7c21

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +152 -156
app.py CHANGED
@@ -1,156 +1,152 @@
1
- # from pathlib import Path
2
- # from typing import List, Dict, Tuple
3
- # import matplotlib.colors as mpl_colors
4
-
5
- # import pandas as pd
6
- # import seaborn as sns
7
- # import shinyswatch
8
-
9
- # from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
10
-
11
- # sns.set_theme()
12
-
13
- # www_dir = Path(__file__).parent.resolve() / "www"
14
-
15
- # df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
16
- # numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
17
- # species: List[str] = df["Species"].unique().tolist()
18
- # species.sort()
19
-
20
- # app_ui = ui.page_fillable(
21
- # shinyswatch.theme.minty(),
22
- # ui.layout_sidebar(
23
- # ui.sidebar(
24
- # # Artwork by @allison_horst
25
- # ui.input_selectize(
26
- # "xvar",
27
- # "X variable",
28
- # numeric_cols,
29
- # selected="Bill Length (mm)",
30
- # ),
31
- # ui.input_selectize(
32
- # "yvar",
33
- # "Y variable",
34
- # numeric_cols,
35
- # selected="Bill Depth (mm)",
36
- # ),
37
- # ui.input_checkbox_group(
38
- # "species", "Filter by species", species, selected=species
39
- # ),
40
- # ui.hr(),
41
- # ui.input_switch("by_species", "Show species", value=True),
42
- # ui.input_switch("show_margins", "Show marginal plots", value=True),
43
- # ),
44
- # ui.output_ui("value_boxes"),
45
- # ui.output_plot("scatter", fill=True),
46
- # ui.help_text(
47
- # "Artwork by ",
48
- # ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
49
- # class_="text-end",
50
- # ),
51
- # ),
52
- # )
53
-
54
-
55
- # def server(input: Inputs, output: Outputs, session: Session):
56
- # @reactive.Calc
57
- # def filtered_df() -> pd.DataFrame:
58
- # """Returns a Pandas data frame that includes only the desired rows"""
59
-
60
- # # This calculation "req"uires that at least one species is selected
61
- # req(len(input.species()) > 0)
62
-
63
- # # Filter the rows so we only include the desired species
64
- # return df[df["Species"].isin(input.species())]
65
-
66
- # @output
67
- # @render.plot
68
- # def scatter():
69
- # """Generates a plot for Shiny to display to the user"""
70
-
71
- # # The plotting function to use depends on whether margins are desired
72
- # plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot
73
-
74
- # plotfunc(
75
- # data=filtered_df(),
76
- # x=input.xvar(),
77
- # y=input.yvar(),
78
- # palette=palette,
79
- # hue="Species" if input.by_species() else None,
80
- # hue_order=species,
81
- # legend=False,
82
- # )
83
-
84
- # @output
85
- # @render.ui
86
- # def value_boxes():
87
- # df = filtered_df()
88
-
89
- # def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
90
- # return ui.value_box(
91
- # title,
92
- # count,
93
- # {"class_": "pt-1 pb-0"},
94
- # showcase=ui.fill.as_fill_item(
95
- # ui.tags.img(
96
- # {"style": "object-fit:contain;"},
97
- # src=showcase_img,
98
- # )
99
- # ),
100
- # theme_color=None,
101
- # style=f"background-color: {bgcol};",
102
- # )
103
-
104
- # if not input.by_species():
105
- # return penguin_value_box(
106
- # "Penguins",
107
- # len(df.index),
108
- # bg_palette["default"],
109
- # # Artwork by @allison_horst
110
- # showcase_img="penguins.png",
111
- # )
112
-
113
- # value_boxes = [
114
- # penguin_value_box(
115
- # name,
116
- # len(df[df["Species"] == name]),
117
- # bg_palette[name],
118
- # # Artwork by @allison_horst
119
- # showcase_img=f"{name}.png",
120
- # )
121
- # for name in species
122
- # # Only include boxes for _selected_ species
123
- # if name in input.species()
124
- # ]
125
-
126
- # return ui.layout_column_wrap(*value_boxes, width = 1 / len(value_boxes))
127
-
128
-
129
- # # "darkorange", "purple", "cyan4"
130
- # colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
131
- # colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
132
-
133
- # palette: Dict[str, Tuple[float, float, float]] = {
134
- # "Adelie": colors[0],
135
- # "Chinstrap": colors[1],
136
- # "Gentoo": colors[2],
137
- # "default": sns.color_palette()[0], # type: ignore
138
- # }
139
-
140
- # bg_palette = {}
141
- # # Use `sns.set_style("whitegrid")` to help find approx alpha value
142
- # for name, col in palette.items():
143
- # # Adjusted n_colors until `axe` accessibility did not complain about color contrast
144
- # bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
145
-
146
-
147
- # app = App(
148
- # app_ui,
149
- # server,
150
- # static_assets=str(www_dir),
151
- # )
152
-
153
- # from data import get_data
154
- # get_data()
155
-
156
- print("Yup")
 
1
+ from pathlib import Path
2
+ from typing import List, Dict, Tuple
3
+ import matplotlib.colors as mpl_colors
4
+
5
+ import pandas as pd
6
+ import seaborn as sns
7
+ import shinyswatch
8
+
9
+ from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
10
+
11
+ sns.set_theme()
12
+
13
+ www_dir = Path(__file__).parent.resolve() / "www"
14
+
15
+ df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
16
+ numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
17
+ species: List[str] = df["Species"].unique().tolist()
18
+ species.sort()
19
+
20
+ app_ui = ui.page_fillable(
21
+ shinyswatch.theme.minty(),
22
+ ui.layout_sidebar(
23
+ ui.sidebar(
24
+ # Artwork by @allison_horst
25
+ ui.input_selectize(
26
+ "xvar",
27
+ "X variable",
28
+ numeric_cols,
29
+ selected="Bill Length (mm)",
30
+ ),
31
+ ui.input_selectize(
32
+ "yvar",
33
+ "Y variable",
34
+ numeric_cols,
35
+ selected="Bill Depth (mm)",
36
+ ),
37
+ ui.input_checkbox_group(
38
+ "species", "Filter by species", species, selected=species
39
+ ),
40
+ ui.hr(),
41
+ ui.input_switch("by_species", "Show species", value=True),
42
+ ui.input_switch("show_margins", "Show marginal plots", value=True),
43
+ ),
44
+ ui.output_ui("value_boxes"),
45
+ ui.output_plot("scatter", fill=True),
46
+ ui.help_text(
47
+ "Artwork by ",
48
+ ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
49
+ class_="text-end",
50
+ ),
51
+ ),
52
+ )
53
+
54
+
55
+ def server(input: Inputs, output: Outputs, session: Session):
56
+ @reactive.Calc
57
+ def filtered_df() -> pd.DataFrame:
58
+ """Returns a Pandas data frame that includes only the desired rows"""
59
+
60
+ # This calculation "req"uires that at least one species is selected
61
+ req(len(input.species()) > 0)
62
+
63
+ # Filter the rows so we only include the desired species
64
+ return df[df["Species"].isin(input.species())]
65
+
66
+ @output
67
+ @render.plot
68
+ def scatter():
69
+ """Generates a plot for Shiny to display to the user"""
70
+
71
+ # The plotting function to use depends on whether margins are desired
72
+ plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot
73
+
74
+ plotfunc(
75
+ data=filtered_df(),
76
+ x=input.xvar(),
77
+ y=input.yvar(),
78
+ palette=palette,
79
+ hue="Species" if input.by_species() else None,
80
+ hue_order=species,
81
+ legend=False,
82
+ )
83
+
84
+ @output
85
+ @render.ui
86
+ def value_boxes():
87
+ df = filtered_df()
88
+
89
+ def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
90
+ return ui.value_box(
91
+ title,
92
+ count,
93
+ {"class_": "pt-1 pb-0"},
94
+ showcase=ui.fill.as_fill_item(
95
+ ui.tags.img(
96
+ {"style": "object-fit:contain;"},
97
+ src=showcase_img,
98
+ )
99
+ ),
100
+ theme_color=None,
101
+ style=f"background-color: {bgcol};",
102
+ )
103
+
104
+ if not input.by_species():
105
+ return penguin_value_box(
106
+ "Penguins",
107
+ len(df.index),
108
+ bg_palette["default"],
109
+ # Artwork by @allison_horst
110
+ showcase_img="penguins.png",
111
+ )
112
+
113
+ value_boxes = [
114
+ penguin_value_box(
115
+ name,
116
+ len(df[df["Species"] == name]),
117
+ bg_palette[name],
118
+ # Artwork by @allison_horst
119
+ showcase_img=f"{name}.png",
120
+ )
121
+ for name in species
122
+ # Only include boxes for _selected_ species
123
+ if name in input.species()
124
+ ]
125
+
126
+ return ui.layout_column_wrap(*value_boxes, width = 1 / len(value_boxes))
127
+
128
+
129
+ # "darkorange", "purple", "cyan4"
130
+ colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
131
+ colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
132
+
133
+ palette: Dict[str, Tuple[float, float, float]] = {
134
+ "Adelie": colors[0],
135
+ "Chinstrap": colors[1],
136
+ "Gentoo": colors[2],
137
+ "default": sns.color_palette()[0], # type: ignore
138
+ }
139
+
140
+ bg_palette = {}
141
+ # Use `sns.set_style("whitegrid")` to help find approx alpha value
142
+ for name, col in palette.items():
143
+ # Adjusted n_colors until `axe` accessibility did not complain about color contrast
144
+ bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
145
+
146
+
147
+ app = App(
148
+ app_ui,
149
+ server,
150
+ static_assets=str(www_dir),
151
+ )
152
+