|
<h2>Usage</h2> |
|
|
|
<p>You can load models using the Hugging Face Transformers library:</p> |
|
|
|
<p style="background-color: gray"> |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text-generation", model="nroggendorff/mayo") |
|
|
|
question = "What color is the sky?" |
|
conv = [{"role": "user", "content": question}] |
|
|
|
response = pipe(conv, max_new_tokens=32)[0]['generated_text'][-1]['content'] |
|
print(response) |
|
</p> |
|
|
|
<p>To use models with quantization:</p> |
|
|
|
<p style="background-color: gray"> |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
import torch |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
|
|
model_id = "nroggendorff/mayo" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config) |
|
|
|
question = "What color is the sky?" |
|
prompt = tokenizer.apply_chat_template([{"role": "user", "content": question}], tokenize=False) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
outputs = model.generate(**inputs, max_new_tokens=32) |
|
|
|
generated_text = tokenizer.batch_decode(outputs)[0] |
|
print(generated_text) |
|
</p> |