Spaces:
Runtime error
Runtime error
| #!/usr/bin/python | |
| # | |
| # Copyright 2018 Google LLC | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import PIL | |
| import torch | |
| import torchvision.transforms as T | |
| IMAGENET_MEAN = [0.485, 0.456, 0.406] | |
| IMAGENET_STD = [0.229, 0.224, 0.225] | |
| INV_IMAGENET_MEAN = [-m for m in IMAGENET_MEAN] | |
| INV_IMAGENET_STD = [1.0 / s for s in IMAGENET_STD] | |
| def imagenet_preprocess(): | |
| return T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD) | |
| def rescale(x): | |
| lo, hi = x.min(), x.max() | |
| return x.sub(lo).div(hi - lo) | |
| def imagenet_deprocess(rescale_image=True): | |
| transforms = [ | |
| T.Normalize(mean=[0, 0, 0], std=INV_IMAGENET_STD), | |
| T.Normalize(mean=INV_IMAGENET_MEAN, std=[1.0, 1.0, 1.0]), | |
| ] | |
| if rescale_image: | |
| transforms.append(rescale) | |
| return T.Compose(transforms) | |
| def imagenet_deprocess_batch(imgs, rescale=True): | |
| """ | |
| Input: | |
| - imgs: FloatTensor of shape (N, C, H, W) giving preprocessed images | |
| Output: | |
| - imgs_de: ByteTensor of shape (N, C, H, W) giving deprocessed images | |
| in the range [0, 255] | |
| """ | |
| if isinstance(imgs, torch.autograd.Variable): | |
| imgs = imgs.data | |
| imgs = imgs.cpu().clone() | |
| deprocess_fn = imagenet_deprocess(rescale_image=rescale) | |
| imgs_de = [] | |
| for i in range(imgs.size(0)): | |
| img_de = deprocess_fn(imgs[i])[None] | |
| img_de = img_de.mul(255).clamp(0, 255).byte() | |
| imgs_de.append(img_de) | |
| imgs_de = torch.cat(imgs_de, dim=0) | |
| return imgs_de | |
| class Resize(object): | |
| def __init__(self, size, interp=PIL.Image.BILINEAR): | |
| if isinstance(size, tuple): | |
| H, W = size | |
| self.size = (W, H) | |
| else: | |
| self.size = (size, size) | |
| self.interp = interp | |
| def __call__(self, img): | |
| return img.resize(self.size, self.interp) | |
| def unpack_var(v): | |
| if isinstance(v, torch.autograd.Variable): | |
| return v.data | |
| return v | |
| def split_graph_batch(triples, obj_data, obj_to_img, triple_to_img): | |
| triples = unpack_var(triples) | |
| obj_data = [unpack_var(o) for o in obj_data] | |
| obj_to_img = unpack_var(obj_to_img) | |
| triple_to_img = unpack_var(triple_to_img) | |
| triples_out = [] | |
| obj_data_out = [[] for _ in obj_data] | |
| obj_offset = 0 | |
| N = obj_to_img.max() + 1 | |
| for i in range(N): | |
| o_idxs = (obj_to_img == i).nonzero().view(-1) | |
| t_idxs = (triple_to_img == i).nonzero().view(-1) | |
| cur_triples = triples[t_idxs].clone() | |
| cur_triples[:, 0] -= obj_offset | |
| cur_triples[:, 2] -= obj_offset | |
| triples_out.append(cur_triples) | |
| for j, o_data in enumerate(obj_data): | |
| cur_o_data = None | |
| if o_data is not None: | |
| cur_o_data = o_data[o_idxs] | |
| obj_data_out[j].append(cur_o_data) | |
| obj_offset += o_idxs.size(0) | |
| return triples_out, obj_data_out | |