File size: 6,646 Bytes
d417898 c9b4757 d417898 c9b4757 d417898 c9b4757 d417898 c9b4757 d417898 c9b4757 d417898 c9b4757 d417898 c9b4757 d417898 c9b4757 d417898 c9b4757 d417898 c9b4757 f926cf7 c9b4757 f926cf7 c9b4757 f926cf7 c9b4757 f926cf7 c9b4757 f926cf7 c9b4757 f926cf7 c9b4757 f926cf7 c9b4757 f926cf7 c9b4757 f926cf7 c9b4757 d417898 f926cf7 d417898 f3eaee0 d417898 c9b4757 d417898 c9b4757 d417898 bddd5ad d417898 c9b4757 d417898 c9b4757 d417898 f926cf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
import zipfile
import os
import tempfile
import pandas as pd
import spacy
import subprocess
# Ensure the spaCy French model is downloaded
try:
nlp = spacy.load("fr_core_news_sm")
except OSError:
print("Downloading spaCy 'fr_core_news_sm' model...")
subprocess.run(["python", "-m", "spacy", "download", "fr_core_news_sm"])
nlp = spacy.load("fr_core_news_sm")
# Function to lemmatize text using spaCy
def lemmatize_text(text):
doc = nlp(text)
return " ".join([token.lemma_ for token in doc])
# Global variables to store the corpus
raw_corpus = {} # To store raw texts
lemmatized_corpus = {} # To store lemmatized texts
initial_df = pd.DataFrame()
# Function to process the zip file, lemmatize text, get document names, and calculate word counts
def process_zip_initial(zip_file):
global raw_corpus, lemmatized_corpus, initial_df # To store the raw texts, lemmatized texts, and DataFrame
raw_corpus = {}
lemmatized_corpus = {} # Reset the corpus on new upload
# Create a temporary directory to extract files
with tempfile.TemporaryDirectory() as temp_dir:
# Extract the zip file
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
# Recursively get list of all .txt files in all directories and lemmatize the text
txt_files = []
word_counts = []
for root, dirs, files in os.walk(temp_dir):
for file in files:
if file.endswith('.txt'):
file_path = os.path.join(root, file)
txt_files.append(os.path.basename(file_path)) # Only the file name
# Read the text
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
word_count = len(text.split()) # Split text by spaces to count words
word_counts.append(word_count)
# Store raw text in raw_corpus
raw_corpus[os.path.basename(file_path)] = text.lower()
# Lemmatize the text and store in lemmatized_corpus
lemmatized_text = lemmatize_text(text.lower())
lemmatized_corpus[os.path.basename(file_path)] = lemmatized_text
# Create a DataFrame with document names and word counts
initial_df = pd.DataFrame({"Nom du document": txt_files, "N. mots": word_counts})
return initial_df
# Function to search for keywords in the selected corpus (raw or lemmatized)
def process_zip_and_search(keywords_text, search_mode):
global raw_corpus, lemmatized_corpus, initial_df # Use the texts stored at corpus upload and initial DataFrame
# Read the keywords (no lemmatization of keywords)
keywords = [keyword.strip().lower() for keyword in keywords_text.strip().split("\n") if keyword.strip()]
if not keywords:
# If no keywords are provided, return the initial DataFrame (without the keyword columns)
return initial_df
# Select the appropriate corpus based on the search mode
corpus = lemmatized_corpus if search_mode == "Lemmes" else raw_corpus
# Prepare a dictionary to store the results (initialize with Document Name and empty results)
results = {doc_name: {keyword: "" for keyword in keywords} for doc_name in corpus.keys()}
# Search for keyword frequencies in each text file
for doc_name, text in corpus.items():
for keyword in keywords:
keyword_count = text.count(keyword) # Count occurrences of each keyword
if keyword_count > 0:
results[doc_name][keyword] = keyword_count
# Convert the results dictionary to a DataFrame
df_keywords = pd.DataFrame(results).T # Transpose to have files as rows and keywords as columns
# Reset index to make the document names a column
df_keywords.reset_index(inplace=True)
# Rename the first column to 'Nom du document'
df_keywords.rename(columns={"index": "Nom du document"}, inplace=True)
# Replace 0 frequencies with empty strings
df_keywords.replace(0, "", inplace=True)
# Merge the initial DataFrame with the keyword search results
final_df = pd.merge(initial_df, df_keywords, on="Nom du document", how="left")
return final_df
# Function to export the DataFrame to Excel
def export_to_excel(df):
# Create a temporary directory for storing the Excel file
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp:
excel_path = tmp.name
# Save the DataFrame to Excel
df.to_excel(excel_path, index=False)
return excel_path
# Create Gradio interface with one results table and export functionality
with gr.Blocks() as demo:
gr.Markdown("# Recherche simple par mots-clés avec lemmatisation") # This line adds the title
with gr.Row():
# File upload and initial table with document names
zip_file_input = gr.File(label="Téléversez votre dossier .zip contenant les fichiers texte (format .txt)")
with gr.Row():
# Textbox for entering keywords
keywords_input = gr.Textbox(label="Entrez les mots clés (un par ligne, peuvent contenir plus d'un mot)", placeholder="mots-clés...", lines=10)
with gr.Row():
# Switch button to select between raw tokens and lemmatized search
search_mode = gr.Radio(label="Choisissez le type de recherche", choices=["Mots", "Lemmes"], value="Lemmes")
with gr.Row():
# Button to trigger keyword search
search_button = gr.Button("Recherche")
# Output the final results table after the search button
with gr.Row():
result_table = gr.DataFrame(label="Résultats", col_count=(1, "dynamic"), interactive=False) # Disable renaming/editing
# Button to trigger the Excel export
with gr.Row():
export_button = gr.Button("Exporter vers Excel (.xlsx)")
download_link = gr.File(label="Télécharger le fichier")
# Action to display document names and lemmatized text upon ZIP upload
zip_file_input.change(fn=process_zip_initial, inputs=zip_file_input, outputs=result_table)
# Action to update the table with keywords and results based on the selected search mode
search_button.click(fn=process_zip_and_search, inputs=[keywords_input, search_mode], outputs=result_table)
# Action to export the results to Excel
export_button.click(fn=export_to_excel, inputs=result_table, outputs=download_link)
# Launch the app
demo.launch() |