File size: 26,425 Bytes
cf9a1ba
49da546
 
cf9a1ba
49da546
cf9a1ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49da546
 
 
cf9a1ba
49da546
 
cf9a1ba
 
 
 
49da546
 
 
 
 
 
 
 
 
 
 
 
 
571cc8c
49da546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9a1ba
 
988d01d
 
 
 
cf9a1ba
 
49da546
cf9a1ba
 
 
 
 
b750fb8
cf9a1ba
 
b750fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9a1ba
 
 
49da546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
988d01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9a1ba
988d01d
 
 
 
b750fb8
988d01d
b750fb8
988d01d
b750fb8
 
 
 
 
988d01d
 
 
b750fb8
988d01d
 
 
b750fb8
988d01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b750fb8
988d01d
 
cf9a1ba
 
988d01d
 
 
 
 
 
 
 
 
 
 
 
 
cf9a1ba
d0a5416
988d01d
 
 
 
 
 
 
 
 
 
 
 
 
 
d0a5416
 
988d01d
 
 
 
 
 
 
 
cf9a1ba
 
988d01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9a1ba
 
 
 
69722f6
 
 
 
49da546
 
 
 
 
 
 
 
 
 
 
 
cf9a1ba
 
49da546
 
 
 
 
 
 
 
 
 
cf9a1ba
 
 
49da546
 
cf9a1ba
49da546
cf9a1ba
 
 
 
988d01d
 
 
 
 
cf9a1ba
49da546
 
 
 
 
cf9a1ba
 
 
beee5bd
 
 
 
 
9d51e99
7f3b9ae
9d51e99
 
 
cf9a1ba
 
b84f99a
cf9a1ba
 
 
49da546
 
c902a3f
7390cf0
 
 
c909896
7390cf0
c909896
 
7390cf0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
import os
import re
import json
from datetime import datetime
from typing import List, Dict, Any, Optional, Literal

from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
import gradio as gr
import uvicorn
from pydantic import BaseModel
from huggingface_hub.inference._mcp.agent import Agent
from dotenv import load_dotenv

load_dotenv()

# Configuration
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET", "your-webhook-secret")
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MODEL = os.getenv("HF_MODEL", "microsoft/DialoGPT-medium")
# Use a valid provider literal from the documentation
DEFAULT_PROVIDER: Literal["hf-inference"] = "hf-inference"
HF_PROVIDER = os.getenv("HF_PROVIDER", DEFAULT_PROVIDER)

# Simple storage for processed tag operations
tag_operations_store: List[Dict[str, Any]] = []

# Agent instance
agent_instance: Optional[Agent] = None

# Common ML tags that we recognize for auto-tagging
RECOGNIZED_TAGS = {
    "pytorch",
    "tensorflow",
    "jax",
    "transformers",
    "diffusers",
    "text-generation",
    "text-classification",
    "question-answering",
    "text-to-image",
    "image-classification",
    "object-detection",
    "   ",
    "fill-mask",
    "token-classification",
    "translation",
    "summarization",
    "feature-extraction",
    "sentence-similarity",
    "zero-shot-classification",
    "image-to-text",
    "automatic-speech-recognition",
    "audio-classification",
    "voice-activity-detection",
    "depth-estimation",
    "image-segmentation",
    "video-classification",
    "reinforcement-learning",
    "tabular-classification",
    "tabular-regression",
    "time-series-forecasting",
    "graph-ml",
    "robotics",
    "computer-vision",
    "nlp",
    "cv",
    "multimodal",
}


class WebhookEvent(BaseModel):
    event: Dict[str, str]       # Contains action and scope information
    comment: Dict[str, Any]     # Comment content and metadata
    discussion: Dict[str, Any]  # Discussion information
    repo: Dict[str, str]        # Repository details


app = FastAPI(title="HF Tagging Bot")
app.add_middleware(CORSMiddleware, allow_origins=["*"])


async def get_agent():
    """Get or create Agent instance"""
    print("πŸ€– get_agent() called...")
    global agent_instance
    if agent_instance is None and HF_TOKEN:
        print("πŸ”§ Creating new Agent instance...")
        print(f"πŸ”‘ HF_TOKEN present: {bool(HF_TOKEN)}")
        print(f"πŸ€– Model: {HF_MODEL}")
        print(f"πŸ”— Provider: {DEFAULT_PROVIDER}")

        try:
            agent_instance = Agent(
                model=HF_MODEL,
                provider=DEFAULT_PROVIDER,
                api_key=HF_TOKEN,
                servers=[
                    {
                        "type": "stdio",
                        "config": {
                            "command": "python",
                            "args": ["mcp_server.py"],
                            "cwd": ".",  # Ensure correct working directory
                            "env": {"HF_TOKEN": HF_TOKEN} if HF_TOKEN else {},
                        },
                    }
                ],
            )
            print("βœ… Agent instance created successfully")
            print("πŸ”§ Loading tools...")
            await agent_instance.load_tools()
            print("βœ… Tools loaded successfully")
        except Exception as e:
            print(f"❌ Error creating/loading agent: {str(e)}")
            agent_instance = None
    elif agent_instance is None:
        print("❌ No HF_TOKEN available, cannot create agent")
    else:
        print("βœ… Using existing agent instance")

    return agent_instance


def extract_tags_from_text(text: str) -> List[str]:
    """Extract potential tags from discussion text"""
    text_lower = text.lower()

    # Look for explicit tag mentions like "tag: pytorch" or "#pytorch"
    explicit_tags = []

    # Pattern 1: "tag: something" or "tags: something"
    tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)"
    matches = re.findall(tag_pattern, text_lower)
    for match in matches:
        # Split by comma and clean up
        tags = [tag.strip() for tag in match.split(",")]
        explicit_tags.extend(tags)

    # Pattern 2: "#hashtag" style
    hashtag_pattern = r"#([a-zA-Z0-9-_]+)"
    hashtag_matches = re.findall(hashtag_pattern, text_lower)
    explicit_tags.extend(hashtag_matches)

    # Pattern 3: Look for recognized tags mentioned in natural text
    mentioned_tags = []
    for tag in RECOGNIZED_TAGS:
        if tag in text_lower:
            mentioned_tags.append(tag)

    # Combine and deduplicate
    all_tags = list(set(explicit_tags + mentioned_tags))

    # Filter to only include recognized tags or explicitly mentioned ones
    valid_tags = []
    for tag in all_tags:
        if tag in RECOGNIZED_TAGS or tag in explicit_tags:
            valid_tags.append(tag)

    return valid_tags


# async def process_webhook_comment(webhook_data: Dict[str, Any]):
#     """Process webhook to detect and add tags"""
#     print("🏷️ Starting process_webhook_comment...")

#     try:
#         comment_content = webhook_data["comment"]["content"]
#         discussion_title = webhook_data["discussion"]["title"]
#         repo_name = webhook_data["repo"]["name"]
#         discussion_num = webhook_data["discussion"]["num"]
#         # Author is an object with "id" field
#         comment_author = webhook_data["comment"]["author"].get("id", "unknown")

#         print(f"πŸ“ Comment content: {comment_content}")
#         print(f"πŸ“° Discussion title: {discussion_title}")
#         print(f"πŸ“¦ Repository: {repo_name}")

#         # Extract potential tags from the comment and discussion title
#         comment_tags = extract_tags_from_text(comment_content)
#         title_tags = extract_tags_from_text(discussion_title)
#         all_tags = list(set(comment_tags + title_tags))

#         print(f"πŸ” Comment tags found: {comment_tags}")
#         print(f"πŸ” Title tags found: {title_tags}")
#         print(f"🏷️ All unique tags: {all_tags}")

#         result_messages = []

#         if not all_tags:
#             msg = "No recognizable tags found in the discussion."
#             print(f"❌ {msg}")
#             result_messages.append(msg)
#         else:
#             print("πŸ€– Getting agent instance...")
#             agent = await get_agent()
#             if not agent:
#                 msg = "Error: Agent not configured (missing HF_TOKEN)"
#                 print(f"❌ {msg}")
#                 result_messages.append(msg)
#             else:
#                 print("βœ… Agent instance obtained successfully")

#                 # Process all tags in a single conversation with the agent
#                 try:
#                     # Create a comprehensive prompt for the agent
#                     user_prompt = f"""
# I need to add the following tags to the repository '{repo_name}': {", ".join(all_tags)}

# For each tag, please:
# 1. Check if the tag already exists on the repository using get_current_tags
# 2. If the tag doesn't exist, add it using add_new_tag
# 3. Provide a summary of what was done for each tag

# Please process all {len(all_tags)} tags: {", ".join(all_tags)}
# """

#                     print("πŸ’¬ Sending comprehensive prompt to agent...")
#                     print(f"πŸ“ Prompt: {user_prompt}")

#                     # Let the agent handle the entire conversation
#                     conversation_result = []

#                     try:
#                         async for item in agent.run(user_prompt):
#                             # The agent yields different types of items
#                             item_str = str(item)
#                             conversation_result.append(item_str)

#                             # Log important events
#                             if (
#                                 "tool_call" in item_str.lower()
#                                 or "function" in item_str.lower()
#                             ):
#                                 print(f"πŸ”§ Agent using tools: {item_str[:200]}...")
#                             elif "content" in item_str and len(item_str) < 500:
#                                 print(f"πŸ’­ Agent response: {item_str}")

#                         # Extract the final response from the conversation
#                         full_response = " ".join(conversation_result)
#                         print(f"πŸ“‹ Agent conversation completed successfully")

#                         # Try to extract meaningful results for each tag
#                         for tag in all_tags:
#                             tag_mentioned = tag.lower() in full_response.lower()

#                             if (
#                                 "already exists" in full_response.lower()
#                                 and tag_mentioned
#                             ):
#                                 msg = f"Tag '{tag}': Already exists"
#                             elif (
#                                 "pr" in full_response.lower()
#                                 or "pull request" in full_response.lower()
#                             ):
#                                 if tag_mentioned:
#                                     msg = f"Tag '{tag}': PR created successfully"
#                                 else:
#                                     msg = (
#                                         f"Tag '{tag}': Processed "
#                                         "(PR may have been created)"
#                                     )
#                             elif "success" in full_response.lower() and tag_mentioned:
#                                 msg = f"Tag '{tag}': Successfully processed"
#                             elif "error" in full_response.lower() and tag_mentioned:
#                                 msg = f"Tag '{tag}': Error during processing"
#                             else:
#                                 msg = f"Tag '{tag}': Processed by agent"

#                             print(f"βœ… Result for tag '{tag}': {msg}")
#                             result_messages.append(msg)

#                     except Exception as agent_error:
#                         print(f"⚠️ Agent streaming failed: {str(agent_error)}")
#                         print("πŸ”„ Falling back to direct MCP tool calls...")

#                         # Import the MCP server functions directly as fallback
#                         try:
#                             import sys
#                             import importlib.util

#                             # Load the MCP server module
#                             spec = importlib.util.spec_from_file_location(
#                                 "mcp_server", "./mcp_server.py"
#                             )
#                             mcp_module = importlib.util.module_from_spec(spec) # type: ignore
#                             spec.loader.exec_module(mcp_module) # type: ignore

#                             # Use the MCP tools directly for each tag
#                             for tag in all_tags:
#                                 try:
#                                     print(
#                                         f"πŸ”§ Directly calling get_current_tags for '{tag}'"
#                                     )
#                                     current_tags_result = mcp_module.get_current_tags(
#                                         repo_name
#                                     )
#                                     print(
#                                         f"πŸ“„ Current tags result: {current_tags_result}"
#                                     )

#                                     # Parse the JSON result
#                                     import json

#                                     tags_data = json.loads(current_tags_result)

#                                     if tags_data.get("status") == "success":
#                                         current_tags = tags_data.get("current_tags", [])
#                                         if tag in current_tags:
#                                             msg = f"Tag '{tag}': Already exists"
#                                             print(f"βœ… {msg}")
#                                         else:
#                                             print(
#                                                 f"πŸ”§ Directly calling add_new_tag for '{tag}'"
#                                             )
#                                             add_result = mcp_module.add_new_tag(
#                                                 repo_name, tag
#                                             )
#                                             print(f"πŸ“„ Add tag result: {add_result}")

#                                             add_data = json.loads(add_result)
#                                             if add_data.get("status") == "success":
#                                                 pr_url = add_data.get("pr_url", "")
#                                                 msg = f"Tag '{tag}': PR created - {pr_url}"
#                                             elif (
#                                                 add_data.get("status")
#                                                 == "already_exists"
#                                             ):
#                                                 msg = f"Tag '{tag}': Already exists"
#                                             else:
#                                                 msg = f"Tag '{tag}': {add_data.get('message', 'Processed')}"
#                                             print(f"βœ… {msg}")
#                                     else:
#                                         error_msg = tags_data.get(
#                                             "error", "Unknown error"
#                                         )
#                                         msg = f"Tag '{tag}': Error - {error_msg}"
#                                         print(f"❌ {msg}")

#                                     result_messages.append(msg)

#                                 except Exception as direct_error:
#                                     error_msg = f"Tag '{tag}': Direct call error - {str(direct_error)}"
#                                     print(f"❌ {error_msg}")
#                                     result_messages.append(error_msg)

#                         except Exception as fallback_error:
#                             error_msg = (
#                                 f"Fallback approach failed: {str(fallback_error)}"
#                             )
#                             print(f"❌ {error_msg}")
#                             result_messages.append(error_msg)

#                 except Exception as e:
#                     error_msg = f"Error during agent processing: {str(e)}"
#                     print(f"❌ {error_msg}")
#                     result_messages.append(error_msg)

#         # Store the interaction
#         base_url = "https://huggingface.co"
#         discussion_url = f"{base_url}/{repo_name}/discussions/{discussion_num}"

#         interaction = {
#             "timestamp": datetime.now().isoformat(),
#             "repo": repo_name,
#             "discussion_title": discussion_title,
#             "discussion_num": discussion_num,
#             "discussion_url": discussion_url,
#             "original_comment": comment_content,
#             "comment_author": comment_author,
#             "detected_tags": all_tags,
#             "results": result_messages,
#         }

#         tag_operations_store.append(interaction)
#         final_result = " | ".join(result_messages)
#         print(f"πŸ’Ύ Stored interaction and returning result: {final_result}")
#         return final_result

#     except Exception as e:
#         error_msg = f"❌ Fatal error in process_webhook_comment: {str(e)}"
#         print(error_msg)
#         return error_msg


@app.post("/webhook")
async def webhook_handler(request: Request, background_tasks: BackgroundTasks):
    """
    Handle incoming webhooks from Hugging Face Hub
    Following the pattern from: https://raw.githubusercontent.com/huggingface/hub-docs/refs/heads/main/docs/hub/webhooks-guide-discussion-bot.md
    """
    print("πŸ”” Webhook received!")

    # Step 1: Validate webhook secret (security)
    webhook_secret = request.headers.get("X-Webhook-Secret")
    if webhook_secret != WEBHOOK_SECRET:
        print("❌ Invalid webhook secret")
        return {"error": "Invalid webhook secret"}, 400

    # Step 2: Parse webhook data
    try:
        webhook_data = await request.json()
        print(f"πŸ“₯ Webhook data: {json.dumps(webhook_data, indent=2)}")
    except Exception as e:
        print(f"❌ Error parsing webhook data: {str(e)}")
        return {"error": "invalid JSON"}, 400

    # Step 3: Validate event structure
    event = webhook_data.get("event", {})
    if not event:
        print("❌ No event data in webhook")
        return {"error": "missing event data"}, 400
    
    scope = event.get("scope")
    action = event.get("action")

    print(f"πŸ” Event details - scope: {scope}, action: {action}")

    # Step 4: Check if this is a discussion comment creation
    # Following the webhook guide pattern:
    if (
        action == "create" and
        scope == "discussion.comment"
    ):
        print("βœ… Valid discussion comment creation event")
        
        # Process in background to return quickly to Hub
        background_tasks.add_task(process_webhook_comment, webhook_data)
        
        return {
            "status": "accepted",
            "message": "Comment processing started",
            "timestamp": datetime.now().isoformat()
        }
    else:
        print(f"ℹ️ Ignoring event: action={event.get('action')}, scope={event.get('scope')}")
        return {
            "status": "ignored",
            "reason": "Not a discussion comment creation"
        }    


async def process_webhook_comment(webhook_data: Dict[str, Any]):
    """
    Process webhook comment to detect and add tags
    Integrates with our MCP client for Hub interactions
    """
    print("🏷️ Starting process_webhook_comment...")
    
    try:
        # Extract comment and repository information
        comment_content = webhook_data["comment"]["content"]
        discussion_title = webhook_data["discussion"]["title"]
        repo_name = webhook_data["repo"]["name"]
        discussion_num = webhook_data["discussion"]["num"]
        comment_author = webhook_data["comment"]["author"].get("id", "unknown")
        
        print(f"πŸ“ Comment from {comment_author}: {comment_content}")
        print(f"πŸ“° Discussion: {discussion_title}")
        print(f"πŸ“¦ Repository: {repo_name}")
    except Exception as e:
        print(f"❌ Error parsing webhook data: {str(e)}")
        return {"error": "invalid JSON"}, 400

    # Extract potential tags from comment and title
    comment_tags = extract_tags_from_text(comment_content)
    title_tags = extract_tags_from_text(discussion_title)
    all_tags = list(set(comment_tags + title_tags))
    
    print(f"πŸ” Found tags: {all_tags}")
    
    # Store operation for monitoring
    operation = {
        "timestamp": datetime.now().isoformat(),
        "repo_name": repo_name,
        "discussion_num": discussion_num,
        "comment_author": comment_author,
        "extracted_tags": all_tags,
        "comment_preview": comment_content[:100] + "..." if len(comment_content) > 100 else comment_content,
        "status": "processing"
    }
    tag_operations_store.append(operation)

    if not all_tags:
        operation["status"] = "no_tags"
        operation["message"] = "No recognizable tags found"
        print("❌ No tags found to process")
        return

    # Get MCP agent for tag processing
    agent = await get_agent()
    if not agent:
        operation["status"] = "error"
        operation["message"] = "Agent not configured (missing HF_TOKEN)"
        print("❌ No agent available")
        return

    # Process each extracted tag
    operation["results"] = []
    for tag in all_tags:
        try:
            print(f"πŸ€– Processing tag '{tag}' for repo '{repo_name}'")
            
            # Create prompt for agent to handle tag processing
            prompt = f"""
            Analyze the repository '{repo_name}' and determine if the tag '{tag}' should be added.
            
            First, check the current tags using get_current_tags.
            If '{tag}' is not already present and it's a valid tag, add it using add_new_tag.
            
            Repository: {repo_name}
            Tag to process: {tag}
            
            Provide a clear summary of what was done.
            """
            
            response = await agent.run(prompt) # type: ignore
            print(f"πŸ€– Agent response for '{tag}': {response}")
            
            # Parse response and store result
            tag_result = {
                "tag": tag,
                "response": response,
                "timestamp": datetime.now().isoformat()
            }
            operation["results"].append(tag_result)
            
        except Exception as e:
            error_msg = f"❌ Error processing tag '{tag}': {str(e)}"
            print(error_msg)
            operation["results"].append({
                "tag": tag,
                "error": str(e),
                "timestamp": datetime.now().isoformat()
            })

    operation["status"] = "completed"
    print(f"βœ… Completed processing {len(all_tags)} tags")


@app.get("/")
async def root():
    """Root endpoint with basic information"""
    return {
        "name": "HF Tagging Bot",
        "status": "running",
        "description": "Webhook listener for automatic model tagging",
        "endpoints": {
            "webhook": "/webhook",
            "health": "/health",
            "operations": "/operations"
        }
    }


@app.get("/health")
async def health_check():
    """Health check endpoint for monitoring"""
    agent = await get_agent()
    
    return {
        "status": "healthy",
        "timestamp": datetime.now().isoformat(),
        "components": {
            "webhook_secret": "configured" if WEBHOOK_SECRET else "missing",
            "hf_token": "configured" if HF_TOKEN else "missing",
            "mcp_agent": "ready" if agent else "not_ready"
        }
    }


@app.get("/operations")
async def get_operations():
    """Get recent tag operations for monitoring"""
    # Return last 50 operations
    recent_ops = tag_operations_store[-50:] if tag_operations_store else []
    return {
        "total_operations": len(tag_operations_store),
        "recent_operations": recent_ops
    }


# async def simulate_webhook(
#     repo_name: str, discussion_title: str, comment_content: str
# ) -> str:
#     """Simulate webhook for testing"""
#     if not all([repo_name, discussion_title, comment_content]):
#         return "Please fill in all fields."
#
#     mock_payload = {
#         "event": {"action": "create", "scope": "discussion"},
#         "comment": {
#             "content": comment_content,
#             "author": {"id": "test-user-id"},
#             "id": "mock-comment-id",
#             "hidden": False,
#         },
#         "discussion": {
#             "title": discussion_title,
#             "num": len(tag_operations_store) + 1,
#             "id": "mock-discussion-id",
#             "status": "open",
#             "isPullRequest": False,
#         },
#         "repo": {
#             "name": repo_name,
#             "type": "model",
#             "private": False,
#         },
#     }
#
#     response = await process_webhook_comment(mock_payload)
#     return f"βœ… Processed! Results: {response}"


def create_gradio_app():
    """Create Gradio interface"""
    with gr.Blocks(
        title="HF Tagging Bot", 
        # theme=gr.themes.Soft()
        ) as demo:
        gr.Markdown("# 🏷️ HF Tagging Bot Dashboard")
        gr.Markdown("*Automatically adds tags to models when mentioned in discussions*")

        gr.Markdown("""
        ## How it works:
        - Monitors HuggingFace Hub discussions
        - Detects tag mentions in comments (e.g., "tag: pytorch", 
          "#transformers")
        - Automatically adds recognized tags to the model repository
        - Supports common ML tags like: pytorch, tensorflow, 
          text-generation, etc.
        """)

        with gr.Column():
            sim_repo = gr.Textbox(
                label="Repository",
                value="burtenshaw/play-mcp-repo-bot",
                placeholder="username/model-name",
            )
            sim_title = gr.Textbox(
                label="Discussion Title",
                value="Add pytorch tag",
                placeholder="Discussion title",
            )
            sim_comment = gr.Textbox(
                label="Comment",
                lines=3,
                value="This model should have tags: pytorch, text-generation",
                placeholder="Comment mentioning tags...",
            )
            sim_btn = gr.Button("🏷️ Test Tag Detection")

        with gr.Column():
            sim_result = gr.Textbox(label="Result", lines=8)

        # sim_btn.click(
        #     fn=simulate_webhook,
        #     inputs=[sim_repo, sim_title, sim_comment],
        #     outputs=sim_result,
        # )

        gr.Markdown(f"""
        ## Recognized Tags:
        {", ".join(sorted(RECOGNIZED_TAGS))}
        """)

    return demo


@app.get("/")
async def welcome() -> dict:
    return { "message": "Hello World"}


@app.get("/gradio2")
async def welcome_gradio2() -> dict:
    return { "message": "Hello gradio2"}


# Mount Gradio app
gradio_app = create_gradio_app()
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")


if __name__ == "__main__":
    print("πŸš€ Starting HF Tagging Bot...")
    print("πŸ“Š Dashboard: http://localhost:7860/gradio")
    print("πŸ”— Webhook: http://localhost:7860/webhook")
    #
    # QUICK-AND-DIRTY TEST WITHOUT uvicorn
    #
    uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
    #
    # gradio_app = create_gradio_app()
    # gradio_app.launch()
    

# EOF