File size: 7,581 Bytes
8b274aa
15e8c2d
bafc5cd
15e8c2d
b8bd6c3
 
15e8c2d
 
b8bd6c3
163c0da
 
b8bd6c3
163c0da
b8bd6c3
b82e6a6
1829fd6
163c0da
 
b82e6a6
163c0da
1d525bc
163c0da
1d525bc
 
163c0da
1d525bc
 
163c0da
b8bd6c3
163c0da
 
b82e6a6
 
 
163c0da
b82e6a6
163c0da
 
1829fd6
163c0da
 
9b7097e
163c0da
4650fd8
163c0da
 
 
 
 
1d525bc
163c0da
 
 
1829fd6
163c0da
b8bd6c3
 
163c0da
 
 
1d525bc
163c0da
 
 
 
 
 
1d525bc
163c0da
1d525bc
163c0da
 
 
 
 
 
1d525bc
163c0da
 
1d525bc
163c0da
4650fd8
163c0da
 
 
1d525bc
 
 
712e289
 
163c0da
 
 
712e289
 
163c0da
 
 
 
 
 
712e289
163c0da
 
 
 
 
 
 
 
 
 
 
1d525bc
163c0da
 
 
8b274aa
163c0da
 
b82e6a6
163c0da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b82e6a6
163c0da
 
 
 
 
b8bd6c3
163c0da
 
 
 
 
 
 
 
 
 
 
1d525bc
163c0da
 
 
1d525bc
163c0da
 
 
 
1d525bc
163c0da
 
 
 
 
 
4813ca2
163c0da
 
1d525bc
163c0da
 
 
 
b82e6a6
163c0da
 
b82e6a6
163c0da
 
 
 
 
b82e6a6
163c0da
 
 
 
b82e6a6
163c0da
 
 
 
 
 
55d8544
163c0da
55d8544
 
163c0da
 
 
 
 
 
 
b82e6a6
55d8544
163c0da
 
 
 
 
 
 
 
 
 
15e8c2d
163c0da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import asyncio
import logging
import tempfile
import requests
from datetime import datetime
import edge_tts
import gradio as gr
import torch
import re
from keybert import KeyBERT

# Configuraci贸n b谩sica de logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Clave API de Pexels (configurar en Secrets de Hugging Face)
PEXELS_API_KEY = os.environ.get("PEXELS_API_KEY", "YOUR_DEFAULT_API_KEY")

# Inicializaci贸n del modelo KeyBERT
try:
    kw_model = KeyBERT('distilbert-base-nli-mean-tokens')
    logger.info("Modelo KeyBERT cargado exitosamente.")
except Exception as e:
    logger.error(f"Error al cargar KeyBERT: {e}")
    kw_model = None

# --- Funciones principales optimizadas para Spaces ---

async def text_to_speech(text, output_path, voice="es-ES-ElviraNeural"):
    """Genera audio TTS usando edge-tts"""
    try:
        communicate = edge_tts.Communicate(text, voice)
        await communicate.save(output_path)
        return True
    except Exception as e:
        logger.error(f"Error en TTS: {e}")
        return False

def download_video(url, temp_dir):
    """Descarga un video desde una URL a un directorio temporal"""
    try:
        response = requests.get(url, stream=True, timeout=30)
        response.raise_for_status()
        
        filename = f"video_{datetime.now().strftime('%H%M%S%f')}.mp4"
        filepath = os.path.join(temp_dir, filename)
        
        with open(filepath, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
                
        return filepath
    except Exception as e:
        logger.error(f"Error descargando video: {e}")
        return None

def extract_keywords(text, max_keywords=3):
    """Extrae palabras clave usando KeyBERT o m茅todo simple como fallback"""
    if kw_model:
        try:
            keywords = kw_model.extract_keywords(
                text,
                keyphrase_ngram_range=(1, 2),
                top_n=max_keywords,
                use_mmr=True,
                diversity=0.7
            )
            return [kw[0].replace(" ", "+") for kw in keywords]
        except Exception as e:
            logger.warning(f"Error KeyBERT: {e}")
    
    # Fallback: m茅todo simple
    words = re.findall(r'\b\w+\b', text.lower())
    stop_words = {"el", "la", "los", "las", "de", "en", "y", "a", "que", "es", "por"}
    return list(set([w for w in words if len(w) > 3 and w not in stop_words][:max_keywords]))

def search_pexels_videos(query_list, per_query=2):
    """Busca videos en Pexels usando su API oficial"""
    if not PEXELS_API_KEY:
        logger.error("API_KEY de Pexels no configurada")
        return []
    
    headers = {"Authorization": PEXELS_API_KEY}
    video_urls = []
    
    for query in query_list:
        try:
            params = {
                "query": query,
                "per_page": per_query,
                "orientation": "landscape",
                "size": "medium"
            }
            
            response = requests.get(
                "https://api.pexels.com/videos/search",
                headers=headers,
                params=params,
                timeout=15
            )
            
            if response.status_code == 200:
                videos = response.json().get("videos", [])
                for video in videos:
                    video_files = video.get("video_files", [])
                    if video_files:
                        # Seleccionar el video con la mejor resoluci贸n
                        best_quality = max(
                            video_files, 
                            key=lambda x: x.get("width", 0) * x.get("height", 0)
                        )
                        video_urls.append(best_quality["link"])
        except Exception as e:
            logger.error(f"Error buscando videos: {e}")
    
    return video_urls

def create_video(audio_path, video_paths, output_path):
    """Crea el video final usando FFmpeg"""
    try:
        # Crear archivo de lista para concatenaci贸n
        with open("input_list.txt", "w") as f:
            for path in video_paths:
                f.write(f"file '{path}'\n")
        
        # Comando FFmpeg para concatenar videos y a帽adir audio
        cmd = [
            "ffmpeg", "-y",
            "-f", "concat",
            "-safe", "0",
            "-i", "input_list.txt",
            "-i", audio_path,
            "-c", "copy",
            "-shortest",
            output_path
        ]
        
        subprocess.run(cmd, check=True)
        return True
    except Exception as e:
        logger.error(f"Error creando video: {e}")
        return False

async def generate_video(text, music_url=None):
    """Funci贸n principal para generar el video"""
    temp_dir = tempfile.mkdtemp()
    all_files = []
    
    try:
        # 1. Generar audio TTS
        tts_path = os.path.join(temp_dir, "audio.mp3")
        if not await text_to_speech(text, tts_path):
            return None, "Error generando voz"
        all_files.append(tts_path)
        
        # 2. Extraer palabras clave
        keywords = extract_keywords(text)
        logger.info(f"Palabras clave identificadas: {keywords}")
        
        # 3. Buscar y descargar videos
        video_urls = search_pexels_videos(keywords)
        if not video_urls:
            return None, "No se encontraron videos para las palabras clave"
        
        video_paths = []
        for url in video_urls:
            path = download_video(url, temp_dir)
            if path:
                video_paths.append(path)
                all_files.append(path)
        
        if not video_paths:
            return None, "Error descargando videos"
        
        # 4. Crear video final
        output_path = os.path.join(temp_dir, "final_video.mp4")
        if create_video(tts_path, video_paths, output_path):
            return output_path, "Video creado exitosamente"
        else:
            return None, "Error en la creaci贸n del video"
            
    except Exception as e:
        logger.exception("Error inesperado")
        return None, f"Error: {str(e)}"
    finally:
        # Limpieza opcional (Hugging Face limpia autom谩ticamente)
        pass

# --- Interfaz de Gradio ---
with gr.Blocks(title="Generador Autom谩tico de Videos con IA", theme="soft") as demo:
    gr.Markdown("# 馃幀 Generador Autom谩tico de Videos con IA")
    gr.Markdown("Transforma texto en videos usando contenido de Pexels y voz sintetizada")
    
    with gr.Row():
        with gr.Column():
            text_input = gr.Textbox(
                label="Texto para el video",
                placeholder="Describe el contenido que quieres en el video...",
                lines=5
            )
            generate_btn = gr.Button("Generar Video", variant="primary")
        
        with gr.Column():
            video_output = gr.Video(label="Video Generado")
            status_output = gr.Textbox(label="Estado")
    
    generate_btn.click(
        fn=generate_video,
        inputs=[text_input],
        outputs=[video_output, status_output]
    )
    
    gr.Markdown("### C贸mo funciona:")
    gr.Markdown("""
    1. Ingresa un texto descriptivo
    2. Nuestra IA extrae palabras clave
    3. Buscamos videos relacionados en Pexels
    4. Generamos voz con Edge TTS
    5. Combinamos todo en un video final
    """)

# Para Hugging Face Spaces
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)