Spaces:
Running
Running
File size: 10,088 Bytes
8b274aa 15e8c2d bafc5cd 15e8c2d b8bd6c3 3a7d955 15e8c2d 3a7d955 b8bd6c3 163c0da b8bd6c3 b82e6a6 1829fd6 163c0da 3a7d955 1829fd6 50a2015 b8bd6c3 163c0da 50a2015 3a7d955 50a2015 163c0da 50a2015 3a7d955 50a2015 3a7d955 50a2015 3a7d955 1d525bc 3a7d955 50a2015 4650fd8 163c0da 1d525bc 3a7d955 1d525bc 50a2015 712e289 163c0da 712e289 163c0da 50a2015 163c0da 712e289 163c0da 3a7d955 163c0da 3a7d955 163c0da 50a2015 1d525bc 50a2015 163c0da 8b274aa 3a7d955 50a2015 3a7d955 50a2015 3a7d955 50a2015 3a7d955 50a2015 3a7d955 50a2015 3a7d955 50a2015 3a7d955 50a2015 3a7d955 50a2015 3a7d955 163c0da 50a2015 b82e6a6 50a2015 163c0da 3a7d955 50a2015 163c0da 50a2015 163c0da 50a2015 3a7d955 50a2015 163c0da 50a2015 163c0da b82e6a6 50a2015 163c0da 50a2015 163c0da 3a7d955 50a2015 3a7d955 50a2015 163c0da 50a2015 163c0da 3a7d955 50a2015 1d525bc 50a2015 163c0da 3a7d955 50a2015 3a7d955 50a2015 163c0da 50a2015 1d525bc 163c0da 4813ca2 163c0da 50a2015 1d525bc 50a2015 163c0da 50a2015 163c0da b82e6a6 163c0da 50a2015 163c0da 50a2015 163c0da b82e6a6 50a2015 b82e6a6 163c0da 50a2015 163c0da 50a2015 55d8544 50a2015 55d8544 50a2015 163c0da 50a2015 3a7d955 163c0da 50a2015 163c0da b82e6a6 55d8544 50a2015 163c0da 50a2015 163c0da 50a2015 163c0da 15e8c2d 50a2015 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import os
import asyncio
import logging
import tempfile
import requests
import re
import math
import edge_tts
import gradio as gr
from pydub import AudioSegment
import subprocess
# Configuración básica de logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Clave API de Pexels (configurar en Secrets de Hugging Face)
PEXELS_API_KEY = os.environ.get("PEXELS_API_KEY", "YOUR_API_KEY")
# --- Funciones optimizadas y corregidas ---
def extract_keywords(text, max_keywords=3):
"""Extrae palabras clave usando un método mejorado"""
# Limpieza de texto y tokenización
text = re.sub(r'[^\w\s]', '', text.lower())
words = re.findall(r'\b\w+\b', text)
# Palabras comunes a excluir (lista ampliada)
stop_words = {
"el", "la", "los", "las", "de", "en", "y", "a", "que", "es", "por",
"un", "una", "con", "se", "del", "al", "lo", "como", "para", "su", "sus"
}
# Frecuencia de palabras y filtrado
word_freq = {}
for word in words:
if len(word) > 3 and word not in stop_words:
word_freq[word] = word_freq.get(word, 0) + 1
# Ordenar por frecuencia y longitud
sorted_words = sorted(word_freq.items(), key=lambda x: (x[1], len(x[0])), reverse=True)
return [word for word, _ in sorted_words[:max_keywords]]
def search_pexels_videos(keywords, per_query=2):
"""Busca videos en Pexels con manejo de errores mejorado"""
if not PEXELS_API_KEY or not keywords:
return []
headers = {"Authorization": PEXELS_API_KEY}
video_urls = []
for query in keywords:
try:
logger.info(f"Buscando videos para: '{query}'")
params = {
"query": query,
"per_page": per_query,
"orientation": "landscape",
"size": "medium"
}
response = requests.get(
"https://api.pexels.com/videos/search",
headers=headers,
params=params,
timeout=20
)
if response.status_code == 200:
data = response.json()
videos = data.get("videos", [])
for video in videos:
video_files = video.get("video_files", [])
if video_files:
# Seleccionar el video con la mejor resolución disponible
best_quality = max(
video_files,
key=lambda x: x.get("width", 0) * x.get("height", 0)
)
video_urls.append(best_quality["link"])
logger.info(f"Video encontrado: {best_quality['link']}")
else:
logger.warning(f"Respuesta Pexels: {response.status_code}")
except Exception as e:
logger.error(f"Error buscando videos: {str(e)}")
return video_urls
async def generate_tts(text, output_path, voice="es-ES-ElviraNeural"):
"""Genera audio TTS con manejo de errores"""
try:
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_path)
logger.info("Audio TTS generado exitosamente")
return True
except Exception as e:
logger.error(f"Error en TTS: {str(e)}")
return False
def download_video(url, temp_dir):
"""Descarga videos con manejo robusto de errores"""
try:
logger.info(f"Descargando video: {url}")
response = requests.get(url, stream=True, timeout=40)
response.raise_for_status()
filename = f"video_{os.getpid()}_{datetime.now().strftime('%H%M%S%f')}.mp4"
filepath = os.path.join(temp_dir, filename)
with open(filepath, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
logger.info(f"Video descargado: {filepath}")
return filepath
except Exception as e:
logger.error(f"Error descargando video: {str(e)}")
return None
def create_video(audio_path, video_paths, output_path):
"""Crea el video final con FFmpeg - VERSIÓN CORREGIDA"""
try:
# 1. Crear archivo de lista para concatenación
list_file_path = os.path.join(os.path.dirname(video_paths[0]), "input.txt")
with open(list_file_path, "w") as f:
for path in video_paths:
f.write(f"file '{os.path.basename(path)}'\n")
# 2. Preparar comando FFmpeg
cmd = [
"ffmpeg", "-y",
"-f", "concat",
"-safe", "0",
"-i", list_file_path,
"-i", audio_path,
"-c:v", "libx264", # Codificar video en lugar de copiar
"-preset", "fast",
"-crf", "23",
"-c:a", "aac",
"-b:a", "192k",
"-shortest",
"-movflags", "+faststart",
output_path
]
# 3. Ejecutar FFmpeg con logging detallado
logger.info("Ejecutando FFmpeg: " + " ".join(cmd))
result = subprocess.run(
cmd,
cwd=os.path.dirname(video_paths[0]),
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
if result.returncode != 0:
logger.error(f"Error FFmpeg (code {result.returncode}): {result.stderr}")
return False
logger.info("Video creado exitosamente")
return True
except Exception as e:
logger.error(f"Error creando video: {str(e)}")
return False
finally:
try:
if os.path.exists(list_file_path):
os.remove(list_file_path)
except:
pass
async def generate_video(text, music_file=None):
"""Función principal con manejo mejorado de errores"""
temp_dir = tempfile.mkdtemp()
logger.info(f"Directorio temporal creado: {temp_dir}")
try:
# 1. Generar audio TTS
tts_path = os.path.join(temp_dir, "audio.mp3")
if not await generate_tts(text, tts_path):
return None, "❌ Error generando voz"
# 2. Extraer palabras clave
keywords = extract_keywords(text)
if not keywords:
return None, "❌ No se pudieron extraer palabras clave del texto"
logger.info(f"Palabras clave identificadas: {keywords}")
# 3. Buscar y descargar videos
video_urls = search_pexels_videos(keywords)
if not video_urls:
return None, "❌ No se encontraron videos para las palabras clave"
video_paths = []
for url in video_urls:
path = download_video(url, temp_dir)
if path:
video_paths.append(path)
if not video_paths:
return None, "❌ Error descargando videos"
# 4. Crear video final
output_path = os.path.join(temp_dir, "final_video.mp4")
if not create_video(tts_path, video_paths, output_path):
return None, "❌ Error en la creación del video"
return output_path, "✅ Video creado exitosamente"
except Exception as e:
logger.exception("Error inesperado")
return None, f"❌ Error crítico: {str(e)}"
finally:
# Espacios maneja la limpieza automática
pass
# --- Interfaz de Gradio mejorada ---
with gr.Blocks(title="Generador Automático de Videos", theme=gr.themes.Soft(), css=".gradio-container {max-width: 800px}") as demo:
gr.Markdown("""
# 🎬 Generador Automático de Videos con IA
Transforma texto en videos usando contenido de Pexels y voz sintetizada
""")
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Texto para el video",
placeholder="Ej: Un hermoso paisaje montañoso con ríos cristalinos...",
lines=5,
max_lines=10
)
generate_btn = gr.Button("✨ Generar Video", variant="primary")
with gr.Accordion("Configuración avanzada", open=False):
voice_select = gr.Dropdown(
["es-ES-ElviraNeural", "es-MX-DaliaNeural", "es-US-AlonsoNeural"],
label="Voz",
value="es-ES-ElviraNeural"
)
with gr.Column(scale=3):
video_output = gr.Video(
label="Video Generado",
interactive=False,
height=400
)
status_output = gr.Textbox(
label="Estado",
interactive=False,
show_label=False,
container=False
)
generate_btn.click(
fn=lambda: (None, "⏳ Procesando... Esto puede tomar 1-2 minutos"),
outputs=[video_output, status_output],
queue=False
).then(
fn=generate_video,
inputs=[text_input],
outputs=[video_output, status_output]
)
gr.Markdown("### Instrucciones:")
gr.Markdown("""
1. Describe el video que deseas crear (mínimo 20 palabras)
2. Haz clic en "Generar Video"
3. El sistema buscará videos relevantes en Pexels
4. Creará un video con narración automática
""")
gr.Markdown("### Ejemplos:")
examples = gr.Examples(
examples=[
["Un atardecer en la playa con palmeras y olas suaves"],
["Un bosque otoñal con hojas de colores y senderos naturales"],
["La ciudad de noche con rascacielos iluminados y tráfico"]
],
inputs=[text_input],
label="Ejemplos para probar"
)
# Para Hugging Face Spaces
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |