Spaces:
Running
Running
File size: 6,839 Bytes
43fcbe8 c9d2e08 43fcbe8 c9d2e08 43fcbe8 c9d2e08 43fcbe8 c9d2e08 57db4ae 43fcbe8 c9d2e08 57db4ae c9d2e08 57db4ae c9d2e08 43fcbe8 c9d2e08 43fcbe8 c9d2e08 43fcbe8 c9d2e08 43fcbe8 c9d2e08 43fcbe8 57db4ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import os
import random
import requests
import gradio as gr
from moviepy.editor import VideoFileClip, concatenate_videoclips, AudioFileClip, TextClip, CompositeVideoClip
from moviepy.audio.fx.all import audio_loop
import edge_tts
import asyncio
from datetime import datetime
from pathlib import Path
from transformers import pipeline
# Pexels API key from Hugging Face Space environment variable
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
# Ensure asyncio works with Gradio
def run_async(coro):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(coro)
loop.close()
return result
# Load local text generation model (adjust based on Hugging Face Spaces resources)
try:
generator = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2", device="cpu")
except Exception as e:
print(f"Error loading model: {e}")
generator = None
# Fetch videos from Pexels
def fetch_pexels_videos(query, num_videos=5):
headers = {"Authorization": PEXELS_API_KEY}
url = f"https://api.pexels.com/videos/search?query={query}&per_page={num_videos}"
response = requests.get(url, headers=headers)
if response.status_code == 200:
return [video["video_files"][0]["link"] for video in response.json()["videos"]]
return []
# Generate script using local model or custom text
def generate_script(prompt, custom_text=None):
if custom_text:
return custom_text.strip()
if not prompt:
return "Error: Debes proporcionar un prompt o un guion personalizado."
# Generate script with local model
if generator:
input_text = f"Genera un guion para un video sobre '{prompt}'. Crea una lista numerada con descripciones breves (máximo 20 palabras por ítem) para un top 10 relacionado con el tema."
try:
result = generator(input_text, max_length=300, num_return_sequences=1, do_sample=True)[0]['generated_text']
return result.strip()
except Exception as e:
print(f"Error generating script: {e}")
# Fallback mock response if model fails
if "recetas" in prompt.lower():
return """
1. Tacos al pastor: Jugosa carne marinada con piña.
2. Lasagna: Capas de pasta, carne y queso fundido.
3. Sushi: Arroz y pescado fresco en rollos delicados.
4. Pizza casera: Masa crujiente con tus ingredientes favoritos.
5. Paella: Arroz con mariscos y azafrán.
6. Ceviche: Pescado fresco marinado en limón.
7. Ramen: Caldo rico con fideos y cerdo.
8. Tiramisú: Postre cremoso con café y mascarpone.
9. Enchiladas: Tortillas rellenas con salsa picante.
10. Curry: Especias intensas con carne o vegetales.
"""
return f"Top 10 sobre {prompt}: No se pudo generar un guion específico."
# Generate voice using Edge TTS
async def generate_voice(text, output_file="output.mp3"):
communicate = edge_tts.Communicate(text, voice="es-MX-DaliaNeural")
await communicate.save(output_file)
return output_file
# Generate subtitles
def generate_subtitles(text, duration, fps=24):
words = text.split()
avg_duration = duration / len(words)
subtitles = []
for i, word in enumerate(words):
start_time = i * avg_duration
end_time = (i + 1) * avg_duration
subtitle = TextClip(word, fontsize=30, color='white', bg_color='black', size=(1280, 100))
subtitle = subtitle.set_position(('center', 'bottom')).set_duration(avg_duration).set_fps(fps)
subtitles.append(subtitle)
return subtitles
# Download and trim video
def download_and_trim_video(url, duration, output_path):
response = requests.get(url, stream=True)
with open("temp_video.mp4", "wb") as f:
for chunk in response.iter_content(chunk_size=1024):
f.write(chunk)
clip = VideoFileClip("temp_video.mp4").subclip(0, min(duration, VideoFileClip("temp_video.mp4").duration))
clip.write_videofile(output_path, codec="libx264", audio_codec="aac")
clip.close()
os.remove("temp_video.mp4")
return output_path
# Main video creation function
def create_video(prompt, custom_text, music_file):
output_dir = "output_videos"
os.makedirs(output_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_video = f"{output_dir}/video_{timestamp}.mp4"
# Generate or use provided script
script = generate_script(prompt, custom_text)
if "Error" in script:
return script
# Generate voice
voice_file = "temp_audio.mp3"
run_async(generate_voice(script, voice_file))
audio = AudioFileClip(voice_file)
video_duration = audio.duration
# Fetch Pexels videos
query = prompt.split()[0] if prompt else "generic"
video_urls = fetch_pexels_videos(query, num_videos=5)
if not video_urls:
return "Error: No se encontraron videos en Pexels."
# Download and trim videos
clips = []
for i, url in enumerate(video_urls):
clip_path = f"temp_clip_{i}.mp4"
download_and_trim_video(url, video_duration / len(video_urls), clip_path)
clips.append(VideoFileClip(clip_path))
# Concatenate video clips
final_clip = concatenate_videoclips(clips, method="compose").set_duration(video_duration)
# Add looped music
if music_file:
music = AudioFileClip(music_file.name)
music = audio_loop(music, duration=video_duration)
final_audio = final_clip.set_audio(music.set_duration(video_duration))
else:
final_audio = final_clip.set_audio(audio)
# Add subtitles
subtitles = generate_subtitles(script, video_duration)
final_clip = CompositeVideoClip([final_clip] + subtitles)
# Write final video
final_clip.write_videofile(output_video, codec="libx264", audio_codec="aac", fps=24)
# Clean up
for clip in clips:
clip.close()
audio.close()
if music_file:
music.close()
final_clip.close()
os.remove(voice_file)
for i in range(len(video_urls)):
os.remove(f"temp_clip_{i}.mp4")
return output_video
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Generador de Videos")
gr.Markdown("Ingresa un prompt (ej., 'Top 10 recetas más ricas') o un guion personalizado. Sube música opcional (MP3).")
prompt = gr.Textbox(label="Prompt", placeholder="Ejemplo: Top 10 recetas más ricas")
custom_text = gr.Textbox(label="Guion Personalizado", placeholder="Ingresa tu propio guion aquí (opcional)")
music_file = gr.File(label="Subir Música (MP3, opcional)", file_types=[".mp3"])
submit = gr.Button("Generar Video")
output = gr.Video(label="Video Generado")
submit.click(fn=create_video, inputs=[prompt, custom_text, music_file], outputs=output)
demo.launch() |