Spaces:
Runtime error
Runtime error
File size: 12,236 Bytes
8b274aa 15e8c2d bafc5cd 15e8c2d b8bd6c3 6bc8144 15e8c2d 6bc8144 3a7d955 6bc8144 cdba26b b8bd6c3 0b39b27 b8bd6c3 b82e6a6 1829fd6 0b39b27 2b5730b 6bc8144 cdba26b 2b5730b cdba26b 6bc8144 cdba26b 6bc8144 2b5730b cdba26b 1829fd6 6bc8144 cdba26b 6bc8144 2b5730b 6bc8144 b8bd6c3 cdba26b 6bc8144 cdba26b 2b5730b 6bc8144 cdba26b 0b39b27 cdba26b 0b39b27 6bc8144 0b39b27 cdba26b 6bc8144 cdba26b 6bc8144 2b5730b 6bc8144 cdba26b 2b5730b 6bc8144 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 2b5730b cdba26b 6bc8144 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 3a7d955 cdba26b 0b39b27 cdba26b 50a2015 cdba26b 0b39b27 cdba26b 0b39b27 50a2015 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 50a2015 cdba26b 0b39b27 2b5730b 0b39b27 6bc8144 0b39b27 cdba26b 6bc8144 0b39b27 cdba26b 163c0da cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b b82e6a6 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 15763cd cdba26b 0b39b27 cdba26b 15763cd cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 6bc8144 cdba26b 0b39b27 6bc8144 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 cdba26b 0b39b27 163c0da 15e8c2d 2b5730b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import os
import asyncio
import logging
import tempfile
import requests
from datetime import datetime
import edge_tts
import gradio as gr
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from keybert import KeyBERT
from moviepy.editor import VideoFileClip, concatenate_videoclips, AudioFileClip, CompositeAudioClip
import subprocess
import re
import math
from pydub import AudioSegment
from collections import Counter
import shutil
# Configuración de logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Clave API de Pexels
PEXELS_API_KEY = os.environ.get("PEXELS_API_KEY")
# Buscar videos en Pexels usando API REST
def buscar_videos_pexels(query, api_key, per_page=5):
headers = {"Authorization": api_key}
try:
response = requests.get(
"https://api.pexels.com/videos/search",
headers=headers,
params={"query": query, "per_page": per_page, "orientation": "landscape"},
timeout=15
)
response.raise_for_status()
return response.json().get("videos", [])
except Exception as e:
logger.error(f"Error buscando videos en Pexels: {e}")
return []
# Inicialización de modelos
MODEL_NAME = "datificate/gpt2-small-spanish" # Modelo en español
try:
tokenizer = GPT2Tokenizer.from_pretrained(MODEL_NAME)
model = GPT2LMHeadModel.from_pretrained(MODEL_NAME).eval()
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
logger.info("Modelo GPT-2 en español cargado")
except Exception as e:
logger.error(f"Error al cargar modelo GPT-2: {e}")
tokenizer = model = None
try:
kw_model = KeyBERT('distilbert-base-multilingual-cased') # Modelo multilingüe
logger.info("KeyBERT cargado")
except Exception as e:
logger.error(f"Error al cargar KeyBERT: {e}")
kw_model = None
# Función mejorada para generar guiones
def generate_script(prompt, max_length=150):
if not tokenizer or not model:
return prompt # Fallback al prompt original
try:
# Prompt mejorado con instrucciones claras
enhanced_prompt = f"Escribe un guion corto y coherente sobre: {prompt}"
inputs = tokenizer(enhanced_prompt, return_tensors="pt", truncation=True, max_length=512)
# Parámetros optimizados para español
outputs = model.generate(
**inputs,
max_length=max_length,
do_sample=True,
top_p=0.9,
top_k=40,
temperature=0.7,
repetition_penalty=1.5,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Limpiar texto generado
text = re.sub(r'<[^>]+>', '', text) # Eliminar tokens especiales
text = text.split(".")[0] + "." # Tomar la primera oración coherente
return text
except Exception as e:
logger.error(f"Error generando guion: {e}")
return prompt # Fallback al prompt original
# Generación de voz
async def text_to_speech(text, output_path, voice="es-ES-ElviraNeural"):
try:
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_path)
return True
except Exception as e:
logger.error(f"Error en TTS: {e}")
return False
# Descarga de videos
def download_video_file(url, temp_dir):
if not url:
return None
try:
response = requests.get(url, stream=True, timeout=30)
file_name = f"video_{datetime.now().strftime('%H%M%S%f')}.mp4"
output_path = os.path.join(temp_dir, file_name)
with open(output_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return output_path
except Exception as e:
logger.error(f"Error descargando video: {e}")
return None
# Loop para audio
def loop_audio_to_length(audio_clip, target_duration):
if audio_clip.duration >= target_duration:
return audio_clip.subclip(0, target_duration)
loops = int(target_duration / audio_clip.duration) + 1
audios = [audio_clip] * loops
return concatenate_videoclips(audios).subclip(0, target_duration)
# Extracción de palabras clave robusta
def extract_visual_keywords_from_script(script_text):
# Limpiar texto
clean_text = re.sub(r'[^\w\sáéíóúñ]', '', script_text.lower())
# Método 1: KeyBERT si está disponible
if kw_model:
try:
keywords = kw_model.extract_keywords(
clean_text,
keyphrase_ngram_range=(1, 1),
stop_words='spanish',
top_n=3
)
return [kw[0].replace(" ", "+") for kw in keywords]
except:
pass # Fallback al método simple
# Método 2: Frecuencia de palabras (fallback)
words = clean_text.split()
stop_words = {"el", "la", "los", "las", "de", "en", "y", "a", "que", "es", "un", "una", "con"}
keywords = [word for word in words if len(word) > 3 and word not in stop_words]
if not keywords:
return ["naturaleza"] # Palabra clave por defecto
# Contar frecuencia y seleccionar las 3 más comunes
word_counts = Counter(keywords)
return [word.replace(" ", "+") for word, _ in word_counts.most_common(3)]
# Función principal para crear video
def crear_video(prompt_type, input_text, musica_file=None):
logger.info(f"Iniciando creación de video: {prompt_type}")
# 1. Generar o usar guion
if prompt_type == "Generar Guion con IA":
guion = generate_script(input_text)
else:
guion = input_text
logger.info(f"Guion: {guion[:100]}...")
# Validar guion
if not guion.strip():
raise ValueError("El guion está vacío")
# Directorio temporal
temp_dir = tempfile.mkdtemp()
temp_files = []
try:
# 2. Generar audio de voz
voz_path = os.path.join(temp_dir, "voz.mp3")
if not asyncio.run(text_to_speech(guion, voz_path)):
raise ValueError("Error generando voz")
temp_files.append(voz_path)
audio_tts = AudioFileClip(voz_path)
audio_duration = audio_tts.duration
# 3. Extraer palabras clave
keywords = extract_visual_keywords_from_script(guion)
logger.info(f"Palabras clave: {keywords}")
# 4. Buscar y descargar videos
videos_data = []
for keyword in keywords:
videos_data.extend(buscar_videos_pexels(keyword, PEXELS_API_KEY, per_page=2))
video_paths = []
for video in videos_data:
best_quality = max(video['video_files'], key=lambda x: x['width'] * x['height'])
path = download_video_file(best_quality['link'], temp_dir)
if path:
video_paths.append(path)
temp_files.append(path)
if not video_paths:
raise ValueError("No se encontraron videos adecuados")
# 5. Procesar videos
clips = []
current_duration = 0
for path in video_paths:
if current_duration >= audio_duration:
break
try:
clip = VideoFileClip(path)
usable_duration = min(clip.duration, 10)
clips.append(clip.subclip(0, usable_duration))
current_duration += usable_duration
except Exception as e:
logger.warning(f"Error procesando video: {e}")
if not clips:
raise ValueError("No hay clips válidos")
video_base = concatenate_videoclips(clips, method="compose")
# 6. Manejar música de fondo
final_audio = audio_tts
if musica_file:
try:
# Convertir el archivo de música a formato utilizable
music_path = os.path.join(temp_dir, "musica.mp3")
shutil.copyfile(musica_file, music_path)
temp_files.append(music_path)
musica_audio = AudioFileClip(music_path)
musica_loop = loop_audio_to_length(musica_audio, audio_duration)
final_audio = CompositeAudioClip([
musica_loop.volumex(0.3),
audio_tts.volumex(1.0)
])
except Exception as e:
logger.warning(f"Error procesando música: {e}")
# 7. Crear video final
video_final = video_base.set_audio(final_audio).subclip(0, audio_duration)
output_path = os.path.join(temp_dir, "final_video.mp4")
video_final.write_videofile(
output_path,
fps=24,
threads=4,
codec="libx264",
audio_codec="aac",
preset="medium",
logger=None
)
return output_path
except Exception as e:
logger.error(f"Error creando video: {e}")
raise
finally:
# Limpieza
for path in temp_files:
try:
if os.path.isfile(path):
os.remove(path)
except:
pass
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir, ignore_errors=True)
# Función para ejecutar la aplicación
def run_app(prompt_type, prompt_ia, prompt_manual, musica_file):
input_text = prompt_ia if prompt_type == "Generar Guion con IA" else prompt_manual
if not input_text.strip():
return None, "Por favor ingresa texto"
try:
video_path = crear_video(prompt_type, input_text, musica_file)
return video_path, "✅ Video generado exitosamente"
except ValueError as ve:
return None, f"⚠️ Error: {ve}"
except Exception as e:
return None, f"❌ Error crítico: {str(e)}"
# Interfaz de Gradio
with gr.Blocks(title="Generador de Videos con IA", theme="soft") as app:
gr.Markdown("## 🎬 Generador Automático de Videos con IA")
with gr.Tab("Generador de Video"):
with gr.Row():
prompt_type = gr.Radio(
["Generar Guion con IA", "Usar Mi Guion"],
label="Método",
value="Generar Guion con IA"
)
with gr.Column(visible=True) as ia_guion_column:
prompt_ia = gr.Textbox(
label="Tema para IA",
lines=2,
placeholder="Ej: Un paisaje natural con montañas y ríos..."
)
with gr.Column(visible=False) as manual_guion_column:
prompt_manual = gr.Textbox(
label="Tu Guion Completo",
lines=5,
placeholder="Ej: En este video exploraremos los misterios del océano..."
)
musica_input = gr.Audio(
label="Música de fondo (opcional)",
type="filepath"
)
boton = gr.Button("✨ Generar Video", variant="primary")
with gr.Column():
salida_video = gr.Video(label="Video Generado", interactive=False)
estado_mensaje = gr.Textbox(label="Estado", interactive=False)
# Manejar visibilidad de columnas
prompt_type.change(
lambda x: (gr.update(visible=x == "Generar Guion con IA"),
gr.update(visible=x == "Usar Mi Guion")),
inputs=prompt_type,
outputs=[ia_guion_column, manual_guion_column]
)
# Lógica de generación
boton.click(
lambda: (None, "⏳ Procesando... (puede tardar varios minutos)"),
outputs=[salida_video, estado_mensaje],
queue=False
).then(
run_app,
inputs=[prompt_type, prompt_ia, prompt_manual, musica_input],
outputs=[salida_video, estado_mensaje]
)
if __name__ == "__main__":
app.launch(server_name="0.0.0.0", server_port=7860) |