INVIDEO_BASIC / app.py
gnosticdev's picture
Update app.py
30c3706 verified
raw
history blame
5.85 kB
import os
import subprocess
import requests
import gradio as gr
from moviepy.editor import *
from datetime import datetime
import logging
import re
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import warnings
# Configuraci贸n inicial
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Suprimir warnings no deseados
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
# Lista de voces v谩lidas
VOICES = [
"es-MX-DaliaNeural", "es-ES-ElviraNeural", "es-AR-ElenaNeural",
"es-MX-JorgeNeural", "es-ES-AlvaroNeural", "es-AR-TomasNeural",
"en-US-JennyNeural", "fr-FR-DeniseNeural", "de-DE-KatjaNeural"
]
# Cargar modelo GPT-2 con configuraci贸n optimizada
try:
tokenizer = GPT2Tokenizer.from_pretrained("datificate/gpt2-small-spanish")
model = GPT2LMHeadModel.from_pretrained("datificate/gpt2-small-spanish")
logger.info("Modelo GPT-2 cargado correctamente")
except Exception as e:
logger.error(f"Error cargando modelo: {str(e)}")
model = None
tokenizer = None
def generar_texto(tema):
"""Genera texto largo sobre el tema sin estructuras predefinidas"""
if model is None or tokenizer is None:
return f"Contenido sobre {tema}. " * 50
try:
# Prompt directo y simple
prompt = f"Describe detalladamente {tema}"
# Codificar el texto con truncamiento
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
# Generar texto con par谩metros optimizados
outputs = model.generate(
inputs.input_ids,
max_length=800,
do_sample=True,
temperature=0.7,
top_k=40,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id
)
texto = tokenizer.decode(outputs[0], skip_special_tokens=True)
return re.sub(r'\s+', ' ', texto).strip()
except Exception as e:
logger.error(f"Error generando texto: {str(e)}")
return f"Texto generado sobre {tema}. " * 50
def obtener_videos(tema):
"""Obtiene videos de Pexels con manejo robusto de errores"""
try:
headers = {"Authorization": PEXELS_API_KEY}
response = requests.get(
f"https://api.pexels.com/videos/search?query={tema}&per_page=3",
headers=headers,
timeout=10
)
return response.json().get("videos", [])[:3]
except Exception as e:
logger.error(f"Error obteniendo videos: {str(e)}")
return []
def crear_video(prompt, voz_seleccionada):
try:
# 1. Generar texto
texto = generar_texto(prompt)
logger.info(f"Texto generado: {len(texto)} caracteres")
# 2. Crear narraci贸n de voz
voz_file = "narracion.mp3"
subprocess.run([
'edge-tts',
'--voice', voz_seleccionada,
'--text', texto,
'--write-media', voz_file
], check=True)
audio = AudioFileClip(voz_file)
duracion = audio.duration
# 3. Obtener y procesar videos
videos = obtener_videos(prompt) or obtener_videos("nature")
clips = []
for i, video in enumerate(videos):
try:
# Seleccionar video de mayor calidad
video_file = max(video['video_files'], key=lambda x: x.get('width', 0))
temp_file = f"temp_{i}.mp4"
# Descargar video
with requests.get(video_file['link'], stream=True) as r:
r.raise_for_status()
with open(temp_file, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
# Procesar clip
clip = VideoFileClip(temp_file)
clip_duration = min(duracion/len(videos), clip.duration)
clips.append(clip.subclip(0, clip_duration))
except Exception as e:
logger.error(f"Error procesando video {i}: {str(e)}")
# 4. Crear video final
if not clips:
final_clip = ColorClip((1280, 720), (0, 0, 0), duration=duracion)
else:
final_clip = concatenate_videoclips(clips).set_duration(duracion)
final_clip = final_clip.set_audio(audio)
# 5. Exportar video
output_file = f"video_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
final_clip.write_videofile(
output_file,
fps=24,
codec="libx264",
audio_codec="aac",
threads=2,
preset='fast'
)
return output_file
except Exception as e:
logger.error(f"Error cr铆tico: {str(e)}")
return None
finally:
# Limpieza de archivos temporales
for f in [voz_file, *[f"temp_{i}.mp4" for i in range(3)]]:
if os.path.exists(f):
try:
os.remove(f)
except:
pass
# Interfaz minimalista
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
tema = gr.Textbox(label="Tema del video")
voz = gr.Dropdown(label="Voz", choices=VOICES, value=VOICES[0])
btn = gr.Button("Generar Video")
with gr.Column():
video = gr.Video(label="Resultado")
btn.click(
fn=crear_video,
inputs=[tema, voz],
outputs=video
)
if __name__ == "__main__":
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)